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Abstract

Several vibro-acoustic models for either single wall or multi-layer construc-
tions are based on classical plate and first order shear deformation theories.
The equivalent or condensed plate models employ the thin plate model to
extract the dynamic mechanical properties of the multi-layer system consid-
ering only flexural and shear motions for the structure under investigation.
Since these plate models do not account for the compressional or symmetric
motion of the structure, both thin and thick plate theories encounter lim-
itations for mid to high frequency predictions depending on the structures
considered. In this work, analytical expressions for the frequency limit of thin
and thick plate theories are derived for an elastic layer of isotropic material
from the analyses of wavenumbers and admittances. Additionally, refined
expressions for coincidence and critical frequencies are presented. Validation
of these frequency limits are made by comparing the transmission loss (TL)
obtained from both plate theories with the TL computed through the theory
of elasticity for a range of thin/thick and soft/stiff materials.
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NOMENCLATURE

h Thickness θ Incident angle
k0 Wavenumber in the air kt Transverse wavenumber
kp Natural propagating wavenumber kb Bending wavenumber
ks Corrected shear wavenumber km Membrane wavenumber
δl Longitudinal wavenumber δs Shear wavenumber
ω Circular frequency f Frequency
fcut-on Cut-on frequency fcomp Compressional frequency

fthin/thick
Frequency limit of thin plate the-
ory

fcoincthin
Coincidence frequency of a thin
plate

fcoincthick
Coincidence frequency of a thick
plate

fcrithin Critical frequency of a thin plate

fcrithick Critical frequency of a thick plate fplate/solidoi
Frequency limit of plate theories
for oblique incidence

fplate/soliddf
Frequency limit of plate theories
for diffuse field

c0 Speed of sound in the air

V P State vector of a plate V ES State vector of an elastic layer
p Pressure at a point u Transverse velocity at a point
v Normal velocity at a point σzz Normal stress at a point
σxz Shear stress at a point [T P ] Transfer matrix of a plate
[TES] Transfer matrix of an elastic layer ms Mass density per unit area
ρ Volume density of elastic layer ρ0 Volume density of air
D Bending stiffness E Young’s modulus
K Compressional modulus η Loss factor
ν Poisson’s ratio G Shear modulus
G∗ Corrected shear modulus κ Shear correction factor
Iz Mass moment of inertia λ, µ Lamé coefficients

τ Transmission factor ZP
Anti-symmetric impedance of a
plate

Zs Symmetric impedance Za Anti-symmetric impedance
Ys Symmetric admittance Ya Anti-symmetric admittance

Ỹs
Approximated symmetric admit-
tance

Z0 Characteristic impedance of air

Ck
Ratio between bending and shear
wavenumbers

Cy

Minimum value of ratio between
anti-symmetric and symmetric
admittances

ε Error percentage λl Longitudinal wavelength

1. Introduction

When studying the sound insulation of a wall, the main acoustic indi-
cator is the transmission loss (TL) which is controlled by the combination
of several fundamental vibrating modes of the wall. For example, a typical
sound transmission problem encountered in building applications is presented
schematically in Fig. 1 along with its vibrating modes as the acoustic energy
transmitted through the wall depends on its vibro-acoustic behaviour. Al-
though the wall vibrates in a complex manner for the given acoustic excita-
tion, this complex motion can be obtained by superposing the fundamental

2



Complex motion Fundamental motions

Bending Shear Compressional

Figure 1: Schematic representation of vibrating motion of a single wall subjected to acous-
tic excitation.

motions (bending, shear and compressional/dilatational motions). Generally,
looking at the TL characteristics of a single wall as a function of frequency,
three regions can be identified which are controlled by the mass, damping
and stiffness of the wall respectively. The mass and stiffness control zones are
separated by a critical region where strong reduction of transmission loss is
observed. This critical zone is characterized by its frequency which is called
the critical frequency. Various vibro-acoustic models of varying complexity
have been developed to predict the sound insulation properties of plate struc-
tures, especially with regard to noise attenuation problems. An early model
was developed by Cremer [1] which was applied to the computation of the
TL across infinite, thin walls. Related work approaching the same problem
of computing the acoustic insulation indicators of a thin wall are presented
in [2–6]. In Cremer’s model, it is assumed that the motion of the plate is
described only by the bending wave equation, which is based on the classical
plate theory [7].

Davy [8] argues that Cremer’s model can only be used below the critical
frequency since most of the approximations are not valid within and above
the critical region. Improving on Cremer’s theory, Heckl and Donner [9] de-
veloped a model based on the first order shear deformation theory (FSDT)
[10–12] which could be applied to thicker walls to compute sound TL. In
this model, motion due the transverse shear is also included along with the
flexural motion of the plate. The corrected TL expression accounting for
shear deformation of the plate can be found in [13]. Heckl and Donner [9]
point out that their model is valid only at frequencies well below the first
dilatational or compressional frequency of the plate. This is due to the fact
that the FSDT does not account for the thickness stretch motion of the plate
as it assumes constant velocity at all points through the thickness direction.
Consequently, the symmetric motion of the plate is not taken into account

3



in zero, first and higher order plate theories. This may lead to deviations
between the predictions and the actual motion of the plate at higher frequen-
cies, especially when the material is soft. In the work published by Ljunggren
[13, 14], the general expression to compute the TL of an infinite wall with
arbitrary uniform thickness is given, accounting for both antisymmetric and
symmetric motions of the plate.

In recent years, instead of single wall structures, multi-layered struc-
tures have been used widely for better sound comfort and noise attenua-
tion. These structures provide the designers with more choices for tuning
the vibro-acoustic performance leading to better sound insulation character-
istics. Advanced composite structures are one example of multi-layer systems
that are progressively used in different fields such as the space, energy and
aeronautical industries. In transport and construction industries, sandwich
structures are widely used as they provide high stiffness with significantly
low weight. In most cases, two face sheets are bonded with a viscoelastic
layer to improve the overall damping response of the structure. There exist a
large number of theoretical models dedicated to the analysis of the behaviour
of multi-layer structures. According to Carrera [15, 16], these models can be
classified into three major categories as: 1) Equivalent Single Layer (ESL)
models, 2) Layer Wise (LW) models and 3) Hybrid or Zig-Zag models. ESL
models describe the dynamics of the multi-layer plate in terms of the dis-
placement field of an equivalent layer. It is noted that, due to this kind
of displacement description, the number of layers present in the system do
not influence the displacement functions which gives great flexibility in using
shear deformation theories of order one [10–12] and higher [17–20]. Layer
Wise (LW) models describe the displacement field in each layer [21–28]; as
a consequence, this type of model requires higher computational effort as
the number of unknowns increases with the number of layers present in the
structure. Hybrid or Zig-Zag models make use of advantages from the previ-
ous two categories. Although the displacement field is defined in each layer
(similar to the LW models), the interface continuity conditions between two
adjacent layers results in a lower number of unknown functions (as in ESL
models) which do not depend on the number of layers present in the struc-
ture. The reader may refer to [29–34] which use this family of models to
describe the dynamic response of multi-layer systems.

Since industrial multi-layer structures are manufactured with a diversity
of materials, they naturally increase the computational burden for detailed
finite element modelling and it is therefore of interest to condense the be-
haviour of the multi-layer system into a single layer. A simplified equivalent
thin plate model was developed in [35–37] for sandwich structures with a
viscoelastic core. Guyader and Cacciolati [38] have developed an equivalent

4



thin plate model for the multi-layer structure of isotropic layers. Following
a similar path, Marchetti et al. [39] have recently developed an equivalent
thin plate model for laminated structures of orthotropic layers. The aim of
the equivalent plate models is to find the frequency dependent mechanical
parameters of the equivalent thin plate that incorporates the bending and
shear motions of the multi-layer structures. Since plate theories do not ac-
count for the dilatational or compressional motion of the structure, finding a
frequency domain of validity is necessary to safely use these equivalent plate
models.

The reader may note that the words ‘frequency limit’ of a theory refer here
to the frequency up to which the theory can be applied within pre-defined
accuracy intervals for computing the desired acoustic indicators. Although in
structural mechanics and dynamics, thin and thick plates are distinguished
based on the thickness to lateral dimensions ratio [40, 41], such rules may not
be sufficient for vibro-acoustic calculations as they depend on the material
properties of the plate as well. Additionally, although plate theories (both
for thin and thick plates) are commonly employed in computing the acoustic
indicators of infinite and finite walls, there is currently no clear-cut frequency
limit to restrict the applicability of these theories. Qualitative and approxi-
mate frequency limits are given in the literature but it is often a tedious task
to find an analytical expression for applicability limits.

In this work, we derive for the first time analytical expressions for the
applicability limits in the spectral domain for thin and thick plate theories.
Through analysis of the propagating wavenumbers and admittances of the
investigated panels, we quantify the expected accuracy of each theory. The
paper is organized as follows: Sec. 2 describes the theories behind propagating
wavenumbers inside thin, thick plates and elastic solids. The theory of elastic
solids is treated as a reference since it describes the complete motion of an
infinite layer [42]. In Sec. 3, expressions for the limits of applicability of thin
plate theories are discussed by comparing propagating wavenumbers of thin
and thick plate theories. Additionally, refined expressions for the coincidence
and critical frequencies are also presented. In Sec. 4, an expression for the
frequency limit of applicability of plate theories is derived in all generality by
comparing the order of magnitudes of both symmetric and anti-symmetric
admittances of the plate. In Sec. 5, analytical expressions for the frequency
limits of different plate theories are presented along with sound transmission
loss computations for classical industrial materials for validation purposes.
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2. Vibro-acoustic models for an elastic isotropic layer

We start by giving the theoretical background for some commonly used
theories such as the Love-Kirchoff [7, 43] or the Reissner-Mindlin [10–12]
theory used to describe the vibro-acoustic behaviour of isotropic, single wall
structures. In subsequent sections, these theories are compared and their
limitations are discussed.

2.1. Wave propagation in an elastic isotropic plate

Let us consider an infinitely extended elastic medium with thickness h
as shown in Fig. 2. An oblique wave is assumed to be impinging upon one
of the surfaces of the elastic medium with an incident angle θ. For the sake
of simplicity, the incident plane wave is assumed to be in the x − z plane.
Depending on the material properties of the elastic layer, various types of

Figure 2: An oblique plane wave impinging on an infinitely extending elastic isotropic
layer with incident angle θ.

wave propagation are possible. The wave propagation in the x − z plane
will have wave vector components along the x and z axes for each wave.
The incident wave in free air is exciting waves inside the elastic medium;
continuity across the interface demands that the transverse or x component
of the wave vector, kt, for waves propagating in the plate and in air are equal.
We have

kt = k0 sin θ =
ω

c0
sin θ, (1)

where k0 is the wavenumber in free air, ω = 2πf is the circular frequency of
the incident wave and c0 is the speed of sound in air. If the acoustic field in
the elastic layer (Fig. 2) is described by the state vector V P = {p, v}T (where
the superscript P denotes plate, p is the acoustic pressure and v, the particle
velocity normal to the interface), then the general form of the transfer matrix
for plate theories discussed can be expressed by the following equation:

V P
M = [T P ]V P

M ′ =

[
1 ZP
0 1

]
V P
M ′ . (2)
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Here, M and M ′ are points on the left and right hand side on the surface
of the elastic medium, respectively and ZP is the anti-symmetric mechanical
impedance of the plate, that is, the ratio of the differential complex sound
pressure across the plate to the complex plate velocity; it is expressed as
below based on the theory adopted, that is,

ZP =



Zthin = jωms

(
1− Dk4t

ω2ms

)

Zthick =

k4tD −msω
2 +

(
Izms

G∗h
ω2 − k2t

Dms

G∗h

)
ω2 − k2t Izω2

jω

(
k2tD − Izω2

G∗h
+ 1

) , (3)

where Love-Kirchoff theory applies for thin plates and Reissner-Mindlin the-
ory for thick plates. Here, ms is the mass density per unit area,

D =
E(1 + jη)h3

12(1− ν2)

is the bending stiffness, E is the Young’s modulus, j =
√
−1, η is the

loss/damping factor, ν is the Poisson’s ratio, G∗ = κG with G, the shear
modulus of the plate and κ, the shear correction factor accounting for the
transverse shear distribution. Furthermore,

Iz =
ρh3

12

is the mass moment of inertia of the plate and ρ = ms/h is the volume density
of the plate material. Detailed derivations of the mechanical impedances
given in Eq. (3) can, for example, be found in the book by Cremer and Heckl
[44].

When using the thick plate theory, the shear correction factor, κ, is sub-
stituted with different values/expressions by different authors. For example,
Reissner [11] and Mindlin [10] used the values 5/6 and π2/12, respectively, for
the shear correction factor, whereas Heckl and Donner [9] used the following
expression given by Magrab [45],

κ =

(
0.87 + 1.12ν

1 + ν

)2

which is a function of the Poisson’s ratio of the plate. In this article, the
value of κ is taken as 5/6.
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2.1.1. Dispersion relations

Given the mechanical impedances of the structure, dispersion relations are
often obtained by setting the impedance to zero. In other words, dispersion
relations are used to understand the wave propagation in the structure under
natural or free vibration conditions.

For Love-Kirchoff plates (or thin plates), by setting the mechanical impedance
equal to zero, it can be observed that only one type of wave propagation is
possible, that is,

Zthin = 0 ⇒ k4pD −msω
2 = 0 ⇒ kp = kb =

√
ω

√
ms

D
, (4)

where kb corresponds to the bending wavenumber and kp is the natural prop-
agating wavenumber of the plate.

For Reissner-Mindlin plates (or thick plates), the dispersion relation is
obtained as

Zthick = 0 ⇒ k4pD −msω
2 +

(
Izms

G∗h
ω2 − k2p

Dms

G∗h

)
ω2 − k2pIzω2 = 0. (5)

There are four possible solutions for the above quartic equation, that is,

kp = ±

√√√√msω2

2G∗h
+
Izω2

2D
±

√
msω2

D
+

(
msω2

2G∗h
− Izω2

2D

)2

. (6)

Out of the four solutions, two correspond to outgoing waves, that is, the real
part of the wavenumber is positive; these are

kp = kRM1,2 =

√√√√msω2

2G∗h
+
Izω2

2D
±

√
msω2

D
+

(
msω2

2G∗h
− Izω2

2D

)2

. (7)

It is observed from the above equation that the propagating wavenumber
(kRM1) has different asymptotic behaviour with respect to low and high fre-
quencies as shown in Fig. 3, here for the example of a 50 mm plasterboard
with mechanical properties listed in Table 1. One finds in particular:

− At low frequency (or ω → 0), we have

ms

D
�
(

ms

2G∗h
− Iz

2D

)2

ω2

which results in kRM1 tending to kb
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Figure 3: Propagating wavenumbers of a Reissner-Mindlin plate (50 mm plasterboard
with mechanical properties mentioned in Table 1) and its asymptotic behaviours. It is
observed that the main natural propagating wavenumber kRM1 is approaching bending
(kb) and corrected shear wavenumbers (ks) at low and high frequencies respectively.

− At high frequency (or ω → +∞), we find

ms

D
�
(
msω

2

2G∗h
− Iz

2D

)2

ω2

which results in kRM1 tending to ks = ω

√
ms

G∗h
with ks, the corrected

shear wavenumber.

− kRM2 is evanescent until the cut-on frequency given by Eq. (9) after
which it becomes propagating and reaches the membrane wavenumber

km = ω

√
Iz
D

at high frequency.

− ks is always greater than km since
ks
km

=

√
2

κ(1− ν)
> 1
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Based on the above observations, Eq. (7) is rewritten in a compact form as,

kRM1,2 =

√
1

2

[
k2s + k2m ±

√
4k4b + (k2s − k2m)2

]
. (8)

The cut-on frequency can be obtained by considering kRM2 = 0, that is,

k2s + k2m =
√

4k4b + (k2s − k2m)2 ⇒ k4b = k2sk
2
m

and thus

fcut-on =
1

2π

√
G∗h

Iz
. (9)

Further, it is observed that the high frequency asymptote given by Ghinet
and Atalla [27] as

kG&A = ω

√
4Izms

G∗hIz +msD
. (10)

differs from the correct estimation of the high frequency asymptote ks. It
may be noted that Eq. (5) can be obtained from two of the three equilibrium
equations (derived by a Newtonian approach) for thick plates [46]. For the
sake of completeness, the dispersion relation resulting from third equilibrium
equation [27] is presented here. The natural wavenumber from the third
equilibrium equation is given by,

kp = kRM3 =

√
2

1− ν
Izω

2 −G∗h
D

=

√
δ2s −

2

1− ν
k4b
k2s
, (11)

where δs = ω

√
ρ

G
is the pure shear wavenumber of the isotropic elastic layer.

Similar to kRM2 , kRM3 is also evanescent until a cut-on frequency (fcut-on) but
reaches the asymptote δs at higher frequencies as

δ2s �
2

1− ν
k4b
k2s

when ω → +∞. Fig. 3 illustrates these asymptotic behaviours of the solu-
tions of kRM for a plasterboard of thickness 50 mm. Mechanical properties
of the materials used in this paper can be obtained from Table 1.

The transmission loss across an infinite layer surrounded by air (defined
by the equation VM = [T ]2×2VM ′) for an oblique incidence may be computed
from the following expression:

TL = −10 log10 τ, (12)
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Table 1: Material properties of few typical elastic isotropic layers used in this paper

Properties Aluminium Plasterboard Concrete Soft layer
ρ (kg/m3) 2780 700 2150 8
E (GPa) 71 3 33 0.00016

η 0.01 0.08 0.1 0.1
ν 0.3 0.22 0.23 0.44

where

τ (θ) = 4/

∣∣∣∣T11 + T22 −
(
T12 cos θ

Z0

+
T21Z0

cos θ

)∣∣∣∣2
is the transmission factor, Z0 = ρ0c0 is the characteristic impedance of air
and ρ0 is the density of air. In this paper, the values for c0 and ρ0 are taken
as 343 m.s−1 and 1.2 kg.m−3, respectively. The reader may note that for
plate theories, the transmission factor is reduced to the form

τ (θ) = 1/

∣∣∣∣1− ZP cos θ

2Z0

∣∣∣∣2 .
In case of a diffuse field excitation with minimum and maximum angle of
incidences as θmin and θmax, respectively, the TL is obtained computing the
following integral:

TLd = −10 log10


∫ θmax

θmin

τ (θ) sin θ cos θ dθ∫ θmax

θmin

sin θ cos θ dθ

 . (13)

TL computed based on both thin and thick plate theories for the materials
given in Table 1, are analyzed in the Section 5.

It must be realized that both thin and thick plate theories neglect the
compressional mode (also called the symmetric or dilatational mode) and
allow only anti-symmetric modes (i.e, bending and/or shear modes), since
the plate velocity is assumed to be constant through the thickness direction.

2.2. Wave propagation in elastic isotropic solids

From the principles of the theory of elasticity, it can be derived that two
fundamental waves can propagate through an isotropic medium correspond-
ing to longitudinal and shear displacement in the solid. Longitudinal (δl)
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and shear (δs) wave numbers are given as [42],

δl = ω

√
ρ

λ+ 2µ
= ω

√
ρ

K
, δs = ω

√
ρ

µ
, (14)

where K = λ + 2µ is the compressional modulus of the elastic solid which
highly influences the symmetric motions of the layers in a solid,

λ =
Eν

(1 + ν)(1− 2ν)

is the first Lamé coefficient and µ = G is the second Lamé coefficient.
Assuming an acoustic wave incident on the surface of the solid with angle

θ, the resulting wavenumbers that propagate inside the elastic solid have a z
component of the form,

klz =
√
δ2l − k2t , ksz =

√
δ2s − k2t . (15)

By following Folds and Loggins [47], the state vector is taken as V ES =
{u, v, σzz, σxz}T where the superscript ES denotes elastic solid, σxz and u are
the transverse components of the stress and the velocity, and σzz and v the
normal components of the stress and the velocity respectively. The transfer
matrix for elastic solid is then expressed as

V ES
M = [TES]4×4V

ES
M ′ , (16)

where the elements of the matrix [TES] are given in the Appendix A. For
the computation of sound transmission loss across an infinite layer based on
the solid transfer matrix, the reader may refer to the procedure given in the
book by Allard and Atalla [42].

Based on the type of backing at point M ′, the frequency of the first
compressional mode of an elastic layer is given as

fcomp =
1

γh

√
K

ρ
, (17)

where γ takes on the values 2 (half wave frequency) and 4 (quarter wave
frequency) for anechoic and rigid backing respectively.

Since the motion both of the anti-symmetric and compressional mode of
an infinite layer of finite thickness can be expressed based on the theory of
elasticity, calculations of the transfer matrix for elastic solids are considered
here as reference to the analyse using plate theories. By referring to the two
fundamental wavenumbers (δl and δs) of the elastic isotropic solid, it can be
understood that the bending wavenumber is a complex combination of these
fundamental wavenumbers. It is, however, not straightforward to see this
relation from the above equations for elastic isotropic solids.
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3. Comparison between thin and thick plate theories

3.1. Frequency limit of thin plate theory in comparison with thick plate theory

In this section, natural propagating wavenumbers of thin and thick plate
theories are used to find the frequency limit of the thin plate theory. From
the Fig. 3, it can be seen that the thick plate wavenumber (kRM1) clearly
deviates from the bending wavenumber (kb) after certain frequency. It may
be noted that, though there are totally three outgoing waves characterized by
wavenumbers (kRM1 , kRM2 & kRM3), kRM1 is considered for the present anal-
ysis as it is the only wavenumber that is always propagative. Additionally,
since the deviation between kRM1 and kb starts well before the cut-on fre-
quency (fcut-on), kRM1 would be appropriate to derive the frequency limit of

thin plate theory. By defining Ck =
kb
ks

, the ratio between bending and shear

wavenumbers, error percentage (ε) between the propagating wavenumbers of
the thin and thick plate theories is expressed as

ε =

(
1− 1

kRM1/kb

)
100%, (18)

where

kRM1

kb
=

1

2

√√√√2 + κ(1− ν)

C2
k

+

√
16 +

[
2− κ(1− ν)

C2
k

]2
. (19)

The thin plate theory will be valid while ks is negligible compared to kb
(kb >> ks). The value for Ck can be chosen such that ε is below an accepted
error percentage and the frequency range of validity for thin isotropic plate
can be expressed as given by Eq. (20).

kb ≥ Ckks ⇒ f ≤ fthin/thick =
G∗h

2πC2
k

√
1

msD
=

κ

4πhC2
k

√
12E

ρ

1− ν
1 + ν

, (20)

where fthin/thick is the frequency limit of the ‘thin’ plate theory by keeping the
‘thick’ plate theory as reference. For instance, choosing Ck = 4 for typical
isotropic layer corresponds to an error percentage (ε) around 2% between
kRM1 and kb.

3.2. Coincidence and critical frequencies of thick plate

As discussed in the earlier sections, thin plate theory allows only bending
waves to propagate in the elastic plate and shear wave propagation is in-
cluded by thick plate theory to correctly capture the anti-symmetric motion
of the plate. Due to this additional anti-symmetric motion in the plate, the
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coincidence and critical frequency expressions obtained from thin plate the-
ory need to be rewritten with terms corresponding to shear and rotational
inertia.

The coincidence frequency between a plate and an acoustic wave incident
on the plate at an angle θ is defined as the frequency at which the transverse
component of the incident wavenumber is equal to the natural propagating
wavenumber of the plate. In the case of thin plates, the natural propagating
wavenumber is the bending wavenumber and the coincidence frequency is
expressed as,

kb = k0 sin θ =⇒ fcoincthin =
1

2π

( c0
sin θ

)2√ms

D
. (21)

For thick plates, as the natural propagating wavenumber is given by kRM1 ,
the coincidence frequency is expressed as,

kRM1 = k0 sin θ =⇒ fcoincthick =
(c0/ sin θ)2

2π

√(
D

ms

− c20
sin2 θ

Iz
ms

)(
1− c20

sin2 θ

ms

G∗h

) .
(22)

In case of diffuse field excitation, the elastic layer is subjected to all coinci-
dence frequencies corresponding to θ = [0, π/2] and the lowest coincidence
frequency is called the critical frequency. In other words, it is the frequency
at which the speed of sound is equal to the speed of natural propagating
waves of the plate. This can be computed by letting sin θ = 1 in the coinci-
dence frequency expression. The critical frequency obtained from thin plate
theory is given by kb = k0, that is,

fcrithin =
c20
2π

√
ms

D
. (23)

From the Eq. (22), the critical frequency for thick plate is obtained from
kRM1 = k0, that is,

fcrithick =
c20

2π

√(
D

ms

− c20
Iz
ms

)(
1− c20

ms

G∗h

) . (24)

It may be noted that the Eqs. (22) and (24) tend to coincidence and critical
frequencies obtained from thin plate theory as Iz → 0 and G∗ → ∞. As an
illustration, for 12.5 mm plasterboard, the coincidence frequencies computed
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Figure 4: Transmission loss for the infinitely extent plasterboard of thickness 12.5 mm
(properties are mentioned in Table 1) under plane wave excitation with θ = 60o with
coincidence frequencies computed from thin & thick theories and it can be observed that
the estimation of coincidence frequency from thick plate theory is in good agreement with
theory of elasticity computation.

from both plate theories are indicated in the Fig. 4. It is observed from the
Fig. 4 that the coincidence frequency computed from Eq. (22) is in good
agreement with elasticity theory. Therefore, it is worth noting that Eqs. (21)
and (23) are indeed limited to thin plates only, where the transition from
thin to thick plates is given by the frequency fthin/thick in Eq. (20).

4. Frequency limit of plate theories in comparison with theory of
elasticity

When the thickness of the layer is small compared to the lateral dimension
and the longitudinal wavelength (λl = 2π/δl) is large compared to thickness,
a plate theory, controlled by the anti-symmetric motion, is generally con-
sidered. On the contrary, when the thickness of the plate is of the order
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of magnitude of longitudinal wavelength, due to the variation in velocity
through the thickness of the layer, both symmetric and anti-symmetric mo-
tions contribute for the resulting motion of the plate after a certain frequency
(Fig. 5). This implies that plate theories might not be able to predict the

(a) Symmetric mode (b) Anti-symmetric mode

Figure 5: Vibrating modes of an infinitely extent elastic layer. While the symmetric mode
corresponds to the thickness stretch motion of the layer where the particle velocity varies
through the thickness, the anti-symmetric motion corresponds to the bending and shear
motions of the layer where the particle velocity is constant through the thickness.

correct vibro-acoustic behaviour of the elastic layer after this frequency as
they assume only anti-symmetric motions in the plate. Therefore, finding
this frequency limit of plate theories is necessary and in this section, based
on the symmetric and anti-symmetric motions of the plate, the analytical
expression of the frequency limit of plate theories is derived.

Contributions of symmetric and anti-symmetric motions of an isotropic
layer can be quantified by the impedances or admittances, by following Dym
and Lang [48]. Impedances of symmetric and anti-symmetric motions are
defined as follows [48],

Zs = 2
pM + pM ′

vM − vM ′
, (25)

Za = 2
pM − pM ′

vM + vM ′
, (26)

where Zs and Za are symmetric, anti-symmetric impedances of the layer re-
spectively and p and v are pressure and velocity respectively. It may be noted
that though Dym and Lang [48] assumed pM ′ = 0 in their analysis, later, they
have corrected the definitions of impedances with non-zero pressure values
[49].

The above equations are rewritten to obtain the transfer matrix relations
as follows, (

p
v

)
M

=
1

Ya − Ys

[
Ya + Ys 1
4YaYs Ya + Ys

](
p
v

)
M ′
. (27)

Here, Ys = 1/Zs and Ya = 1/Za are the symmetric and anti-symmetric
admittances of the layer respectively. It can be checked that, when the anti-
symmetric admittance is larger than the symmetric admittance (or Ya � Ys),
the transfer matrix in Eq. (27) reduces to the transfer matrix of the plate
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given by Eq. (2). Thus the ratio between Ya and Ys could be a good criterion
to obtain the frequency limit of plate theories. Comparing the longitudinal
wavelength (λl) to the thickness of the plate seems less accurate as it does
not compare the symmetric motion to the anti-symmetric motion.

Since the symmetric motion is controlled by the longitudinal wave of the
layer, the transfer matrix from Eq. (16) is deduced at normal incidence as

(
p
v

)
M

=

 coshδl
jωρ

δl
sinhδl

jδl
ωρ

sinhδl coshδl

(p
v

)
M ′
. (28)

By equating the above equation with Eq. (27), the symmetric admittance is
obtained as

Ys =
hδl(coshδl − 1)

2jmsω sinhδl
= − hδl

2jmsω
tan

hδl
2
. (29)

Approximating the tangent function by a Taylor series expansion (up to first
order), the symmetric admittance can be written as,

tan
hδl
2
≈ hδl

2
=⇒ Ys ≈ Ỹs = −(hδl/2)2

jωms

=
jωh

4K
. (30)

Since the anti-symmetric motion is controlled by the transverse wavenum-
ber of the incident wave and plate theories capture this type of motion, anti-
symmetric admittance is computed from plate theories as given by Eq. (3).

The minimum value of the absolute ratio between the anti-symmetric and
symmetric admittance, denoted by Cy, is used to find the frequency limit
of plate theories. Expressing the anti-symmetric admittance (Ya) from thin

plate theory and the symmetric admittance (Ỹs) from Eq. (30), the frequency
limit of plate theories is expressed as,

∣∣∣∣Ya
Ỹs

∣∣∣∣ ≥ Cy ⇒ f ≤ fplate/solidoi =
c20

2π sin2 θ

√√√√ms

2D
±

√(ms

2D

)2
± 4K

hCyD

sin4 θ

c40
.

(31)
The above expression is valid for oblique incidence whereas in case of dif-
fuse field excitation, the following expression may be used to compute the
frequency limit of plate theories.

∣∣∣∣Ya
Ỹs

∣∣∣∣ ≥ Cy ⇒ f ≤ fplate/soliddf =
c20
2π

√√√√ms

2D
±

√(ms

2D

)2
± 4K

hCyD

1

c40
. (32)
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The above frequency limits are computed by keeping the loss factor (η) to
be zero. The subscript ‘plate/solid’ in the above equations means that the
frequency limit is for ‘plate’ theories in general (as even higher order plate
theories also do not account for symmetric motion) by keeping as a refer-
ence the theory of ‘elastic solids’. Further, the sub-subscripts ‘oi’ and ‘df’
correspond to ‘oblique incidence’ and ‘diffuse field’ respectively. It may be

observed that the relation

∣∣∣∣Ya
Ỹs

∣∣∣∣ ≥ Cy yields four positive roots for the fre-

quency. Out of these four roots, only the minimum of pure real roots is
considered for fplate/solidoi and fplate/soliddf . It may also be noted that the
expression for fplate/soliddf can be modified in two ways. First, by including

higher order terms for the tangent function to get Ỹs. Second, by using
the anti-symmetric mechanical admittance from thick plate theory. Though
these two ways might improve the frequency limit, the final expression for
fplate/soliddf would become more complex. Further, as discussed in the next
section, the frequency limits given by Eqs. (31) and (32) are sufficient enough
for typical single layer walls used in industry. A concrete layer of 140 mm
is taken to illustrate the nature of the symmetric and anti-symmetric admit-
tances of the elastic layer and presented in the Fig. 6.

From the Fig. 6, it can be seen that the anti-symmetric admittance is
larger compared to the symmetric admittance at low frequency range. The
symmetric admittance is seen to become of the same order of magnitude
or larger compared to the anti-symmetric impedance at around 2000 Hz.
By letting the factor Cy to be 10, the frequency limit of plate theories is
computed from Eq. (32). This means that the anti-symmetric admittance is
one order of magnitude larger than the symmetric admittance and from this
frequency onwards use of plate theories is not recommended to compute the
acoustic indicators. Therefore, it is advisable to adopt the theory of elasticity
for computations after this frequency limit.
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Figure 6: Admittances of a concrete layer of thickness 140 mm (properties are mentioned in
Table 1) under plane wave excitation with θ = 60o. It is observed that, from low frequencies
till the limiting frequency (fplate/soliddf

), the symmetric admittance is lesser compared
to the anti-symmetric admittance which supports the applicability of plate theories till
fplate/soliddf

.

5. Numerical examples

In this section, transmission loss (TL) of different material layers (with
properties listed in Table 1) are presented to illustrate the frequency limits
obtained in sections 3 and 4. Both, oblique plane wave incidence of 60◦ and
diffuse fields, are used to compute TL. Since fplate/soliddf is the minimum of all
the possible coincidence frequencies obtained from fplate/solidoi , in this section,
fplate/soliddf is indicated as the limit of plate theory. Though elasticity theory
is considered as reference to analyse the plate theories, additional validation
from finite element method (FEM) is also presented in some of the TL plots
in this section.

FEM simulations are computed using Comsol Multiphysics c© software.
The acoustical variables (pressure, velocity fileds...) are computed in the cou-
pled system (PML-air-material-air-PML) using the “Comsol Pressure Acous-
tics” interface (Helmholtz equation) for air and “Structural Mechanics branch”
for the material (elastic material in “Solid Mechanic”). The interface between
air and the material is modelized using “fluid-structure interface”. The di-
mensions of each material are 60 cm × 60 cm (the thickness is the real thick-
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ness) and periodic lateral conditions are chosen. The domain is adjusted (in
particular the dimensions of the air domains) and meshed with respect to a
10 elements per wavelength (of the incident plane wave excitation) criterion
based on the maximal frequency. For example, at 125 Hz, the number of
resolved degrees of freedom is 444675, the complete mesh consists of 29889
domain elements, 8802 boundary elements and 812 edge elements.

In Figs. 7 and 8, TL computed from different theories (discussed in the
section 2) are presented for comparison along with frequency limits expressed
in sections 3 and 4. It is observed from these plots that, for material like
aluminium (with typical value of thickness used in industries), the thin plate
theory would be sufficient to model the vibro-acoustic behaviours as both
fthin/thick and fplate/soliddf are spotted near the maximum audible frequency.

Figure 7: Transmission loss for an aluminium layer of thickness 5 mm (properties men-
tioned in Table 1) under plane wave excitation with θ = 60o. It is seen that thin plate
theory is adequate to compute the vibro-acoustic indicators as both limiting frequencies
(fthin/thick & fplate/soliddf

) are in the high frequencies.

20



Figure 8: Transmission loss for an aluminium layer of thickness 5 mm (properties men-
tioned in Table 1) under diffuse field excitation. It is seen that thin plate theory is
adequate to compute the vibro-acoustic indicators as both limiting frequencies (fthin/thick
& fplate/soliddf

) are in the high frequencies.

For the plasterboard of 12.5 mm, it is seen from the Figs. 9 and 10 that
TL computed from thin plate theory is begining to deviate from the elasticity
theory computation whereas thick plate theory is still in good agreement with
the elasticity theory until the limiting frequency fplate/soliddf . This explains
the need to include the effect of shear into the anti-symmetric motion via
thick plate theory. Therefore, for these kind of materials, thick plate theory
would be appropriate to compute the acoustic indicators.
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Figure 9: Transmission loss for a plasterboard layer of thickness 12.5 mm (properties
mentioned in Table 1) under plane wave excitation with θ = 60o. Deviations of thin and
thick plate theories from the elastic solid theory (or FEM) are observed after fthin/thick
and fplate/soliddf

respectively.

Figure 10: Transmission loss for a plasterboard layer of thickness 12.5 mm (properties
mentioned in Table 1) under diffuse field excitation. Deviations of thin and thick plate
theories from the elastic solid theory are observed after fthin/thick and fplate/soliddf

respec-
tively. 22



In case of a concrete layer with 140 mm thickness, it is noted from Figs. 11
and 12 that a similar trend is observed as for the plasterboard, that is, thin
and thick plate theories are starting to deviate from the elasticity theory
computation at frequencies above fthin/thick and fplate/soliddf , respectively. One
might also observe two notable points from the TL plots of concrete and plas-
terboard. First, the coincidence frequency occurs after the limit frequency
of thin plate (fthin/thick) in plasterboard whereas it can be spotted before
fthin/thick in concrete. This implies that even for thicker material the thin
plate theory might be still valid after the coincidence frequency. The sec-
ond notable point is that the symmetric motion (or compressional motion)
effect clearly appears in concrete. In Fig. 12, the second minima in the TL
computed from the theory of elasticity corresponds to the compressional fre-
quency (fcomp ≈ 15 kHz) given by Eq. (17). Therefore, it is inferred that the
compressional mode can still be neglected for plasterboard whereas it has to
be taken into account for the concrete layer and this is possible via employing
the theory of elasticity. The same is observed from the TL plots (Figs. 13
& 14) of soft layer with 20 mm thickness. It can be seen that TL of soft
layer is greatly influenced by the symmetric motion after the frequency limit
fplate/soliddf .

Figure 12: Transmission loss for a concrete layer of thickness 140 mm (properties men-
tioned in Table 1) under diffuse field excitation. Deviations of thin and thick plate theories
from the elastic solid theory start to appear after fthin/thick and fplate/soliddf

respectively.
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Figure 11: Transmission loss for a concrete layer of thickness 140 mm (properties men-
tioned in Table 1) under plane wave excitation with θ = 60o. Deviations of thin and thick
plate theories from the elastic solid theory (or FEM) start to appear after fthin/thick and
fplate/soliddf

respectively.

Figure 13: Transmission loss for a soft layer of thickness 20 mm (properties mentioned in
Table 1) under plane wave excitation with θ = 60◦. Deviations of plate theories from the
elastic solid theory (or FEM) start to appear after fplate/soliddf

.
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Figure 14: Transmission loss for a soft layer of thickness 20 mm (properties mentioned in
Table 1) under diffuse field excitation. Deviations of plate theories from the elastic solid
theory start to appear after fplate/soliddf

.

One can also observe from Eq. (20) that, for different materials of in-
finitely extending layers with same thickness, the frequency limit fthin/thick
would result in different values despite thicknesses being the same. Therefore,
it can be inferred that the use of thin plate theory requires proper combina-
tion of thickness and material properties (as given by Eq. (20)) rather than
comparing the thickness to the lateral dimensions. Similar argument holds
for fplate/soliddf as well. In the previous TL plots, the choice of the values of
Ck = 4 and Cy = 10 are further confirmed by the TL variation of plate the-
ories from the elasticity theory and the TL difference between the elasticity
theory and plate theories are observed to be below 1 dB at the frequency
limits. Of course, one can conveniently choose the appropriate value of Ck
and Cy based on the tolerance accepted for the particular acoustic design.

5.1. Further observation

In the case of finite sized plates, generally, the acoustic indicators com-
puted from the infinitely extent layer theories would yield some discrepancies
in the low to mid frequencies compared with experimental tests. Therefore,
there are some works in the literature [5, 50] which focus on correcting the
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acoustic indicators by introducing correction factors that account for geo-
metrical size effect.

Figure 15: Transmission loss, computed from spatial windowing method by Rhazi and
Atalla [50], across a finite size (3 m × 4 m) plasterboard of thickness 12.5 mm (properties
are mentioned in Table 1) under diffuse field excitation. It is observed that limiting fre-
quencies computed for infinite plate are still valid for the finite plates as the size correction
effects minimal near the critical frequency of the plate.

Since the radiation efficiency (which accounts for size correction in sound
transmission problems) is reaching unity near the critical frequency of the
plate [44], the effects due to finite size is mainly visible at low frequen-
cies below the critical frequency. Since the frequency limits (fthin/thick and
fplate/soliddf ) of typical industrial materials fall near and/or after the critical
frequency, these limiting expressions obtained from infinite plate theories are
applicable to the finite size plate as well. For example, this can be observed
from the transmission loss computed from the finite size correction model by
Rhazi and Atalla [50] for the plasterboard of 12.5 mm thickness under diffuse
field excitation in Fig 15.

6. Concluding remarks

The assumptions used in thin and thick plate theories limit their applica-
bility in commonly used industrial materials after a certain frequency. Thin
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plate theory attains the limitation since it does not account for the shear
effect in the anti-symmetric motion of the plate whereas this is considered in
thick plate theories. Nevertheless, both types of plate theories are approxi-
mations since they neglect symmetric motion of the panel in their theoretical
formulation. By analysing the wavenumbers and admittances of the investi-
gated structures, two frequency limits were presented in this manuscript: 1)
from the wave propagation analysis of the thick plate model, based on the
Reissner-Mindlin plate hypothesis, the analytical expression for the limiting
frequency of the thin plate model is derived, while 2) from comparing the
symmetric and anti-symmetric admittances, an analytical expression for the
limiting frequency of plate theories is derived. These two simple analytical
expressions for computing the limit of thin and thick plate theories can be
useful to choose the appropriate model in each case. Deviations of the TL
predictions obtained from different models are observed above these two lim-
iting frequencies. It is also shown that, although the limiting expressions
are derived from infinite layer theories, they can be applied to finite sized
layers as well. Due to the omission of shear effects in thin plate theories,
the refined coincidence and critical frequencies are derived from thick plate
theories. Finally, it is observed that plate theories quickly fail for materials
that are too soft in terms of longitudinal compression.
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Appendix A. The transfer matrix of an elastic isotropic solid

The transfer matrix of an elastic isotropic layer (defined by the equa-
tion V ES(M) = [TES]4×4V

ES(M ′) where V ES = {u, v, σzz, σxz}T ) based on
elasticity theory can be written as follows:

[TES]4×4 =
1

D1 +D2kt
[TESpq ] where p, q = 1 to 4.

The matrix elements (TESpq ) are,
T11 = T44 = D1 cos(hksz) +D2kt cos(hklz),
T22 = T33 = D1 cos(hklz) +D2kt cos(hksz),
T12 = T34 = −j[D2klzksz sin(hksz)−D1kt sin(hklz)]/klz,
T21 = T43 = j[D2kszklz sin(hklz)−D1kt sin(hksz)]/ksz,
T13 = T24 = ωkt[cos(hksz)− cos(hklz)],

T31 = T42 =

(
D1D2

ω2kt

)
T13,

T14 = −jω[klzksz sin(hksz) + k2t sin(hklz)]/klz,
T23 = −jω[klzksz sin(hklz) + k2t sin(hksz)]/ksz,
T32 = −j[D2

2klzksz sin(hksz) +D2
1 sin(hklz)]/(ωklz),

T41 = −j[D2
2klzksz sin(hklz) +D2

1 sin(hksz)]/(ωksz),
where D1 = µ(k2sz − k2t ) and D2 = 2µkt.
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