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This paper presents an alternative formulation of Biot’s theory to account for the elastic frame

effects in a porous medium in which the acoustical properties of the fluid phase are predicted with

an equivalent fluid model. This approach was originally developed for a double porosity medium.

In this paper, the alternative formulation is applied to predict the transmission loss and absorption

coefficient in the case of a single layer fibrous material, a multi-layer system, vibrating perforated

plates, and porous composite materials. In the proposed formulation the coupling coefficients

in Biot’s poroelasticity equations are expressed in terms of the dynamic volumic mass and

dynamic bulk modulus. By doing so, the elastic properties of the material frame are considered

independently from the properties of the fluid. This formulation is implemented in the form of a

transfer matrix algorithm which is validated against experimental data on sound absorption and

sound transmission which are obtained for a range of various sound excitations and material

arrangements. It is shown that this approach is able to predict accurately the acoustical properties

of vibrating perforated plates and porous composites. The proposed approach is sufficiently general

to be implemented in a finite element method. VC 2013 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4826175]

PACS number(s): 43.55.Ev, 43.20.Jr [KVH] Pages: 4801–4807

I. INTRODUCTION

The acoustic performance of poroelastic materials used

in sound packages is controlled by dissipative effects in the

fluid filling the porous space and by the deformation of the

porous skeleton. On this basis, Biot proposed a system of

coupled displacement equations, one for the porous frame

and one for the interstitial fluid. In this model the frame

deformation is linked to the displacement of the fluid via

some source terms. One of the main assumptions of Biot’s

approach is that the dissipation in the fluid is independent of

the dissipation in the skeleton. The present work proposes to

modify Biot’s original theory formulations to explore this

assumption further and back it up with experimental data.

It should be stressed that the proposed alternative to

Biot’s approach is suited to model a large range of poro-

elastic materials accounting for the porous frame deformation

and it can make use of any fluid dissipation model, rather than

rely only on the five parameter Johnson–Champoux–Allard

model which is almost exclusively cited in the relevant litera-

ture. In a general manner, the fluid dissipation is represented

using the dynamic mass density and the dynamic compressi-

bility while the porous frame deformation is represented using

elastic and damping parameters such as Young’s modulus,

Poisson’s ratio, volumic mass, and loss factor. As shown in

Sec. II B, the proposed method can be applied to any existing

form of Biot’s poro-elasticity equations. The proposed

approach can include asymptotic limits of the elastic frame

behavior, i.e., “rigid-body” and “limp” material approxima-

tions, see Sec. III B.

In the last part, Sec. IV, results using the actual formula-

tion are compared with those either measured or predicted

with other approaches for various materials. The materials

examined here comprise single layer fibrous material, three

layer system, perforated panels, and porous composites ma-

terials. Predictions using the proposed formulation are com-

pared to measured or simulated data reported in the previous

literature. These results prove that the proposed formulation

allows us to reduce the number of parameters which are

required to predict the acoustical properties of porous media

with an elastic frame. The proposed model also enables us to

consider additional physical phenomena for a deeper under-

standing of the dissipation mechanisms in poro-elastic mate-

rials. This feature is demonstrated for multi-scale effects

occurring in porous composites.

II. THEORETICAL BASIS OF THE PROPOSED MODEL

In this section, the theoretical basis of the proposed model

is described. The purpose of this section is to show how the

properties of the fluid are implemented and how one can take

advantage of an appropriate rewriting of the equations.

A. Basis assumptions

Hypotheses of Biot’s theory are closely link to those

of the homogenization approach for periodic media as

described, for instance, in Ref. 1. The current study is limited

to porous media composed of two phases, an elastic phase

and a fluid phase: air. The fluid may undergo visco-inertial

and thermal dissipations while the elastic phase may be sub-

jected to structural losses.

It is assumed that the fluid fully saturates the pore

volumes. The phases are continuous, which means that only
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connected pores are considered for the visco-thermal dissipa-

tion in the fluid. The pore size distribution has a low standard

deviation so that a mean value for the pore size can be used

with good accuracy. The mean pore size is small compared

to the wavelengths of the studied phenomena, namely, wave

propagation in the fluid and that in the elastic frame. In addi-

tion, we will assume that the medium is isotropic as in the

work published by Biot in 1956. In this framework, the stud-

ied medium may be considered as homogeneous at a macro-

scopic scale and one can define a representative elementary

volume which is small compared to the wavelength of the

acoustic perturbations.

It may be remembered finally that Biot’s theory, origi-

nally developed for fluid saturated porous media, included

the viscous effects using a tortuosity factor and neglected

thermo-dynamical dissipation. This restriction could be

relieved by introducing a complex valued fluid compressibil-

ity (see, for instance, Ref. 2). The present work further

extends this feature by showing how to couple elastic effects

to several models of visco-thermal dissipation.

B. Formulation of the proposed model

The proposed model is presented here in the framework

of the so-called (u, p) formulation where u is the frame

displacement and p the interstitial pressure. However, this for-

malism may be shown to be valid for other formulations like

(u, U) (Refs. 3, 4) or (u, ut).5 In these formulations, U repre-

sents the fluid displacement and ut is the total displacement

defined as u
t¼ (1�/)uþ/U, / being the porosity of the

medium. This formulation expresses the fluid motion equation

in terms of the interstitial pressure p and is attributed to Atalla

for dedicating a communication in Ref. 6. The equations of

motion can be written as

r � rs þ x2equ ¼ �ecrp; (1)

Dpþ fq22eR x2p ¼ fq22

/2
ecx2r � u; (2)

where rs is the in vacuo stress tensor. In the above equations,

coupling terms are written in the right hand side members.

Using these expressions, the number of degrees of freedom

is reduced from 6 to 4: three frame displacements and the

scalar pressure, which may be of particular interest for

implementation as finite element models.

In addition, eq and q22 are modified Biot’s densities

defined below and eR can be interpreted as the bulk modulus

of a volume of fluid occupying a fraction / of the porous

medium. The coupling factor ec is defined as

ec ¼ /
fq12fq22

�
eQeR

 !
: (3)

Some of these coefficients are related to the coupling

between the elastic effects and the fluid properties,

eQ ¼ 1� /� Kb

Ks

� �
/Ks

D
; (4)

eR ¼ /2KseD ; (5)

with eD ¼ 1� /� Kb

Ks
þ KsfKeq

; (6)

where Kb is the bulk modulus of the frame at constant pres-

sure in air and Ks is the bulk modulus of the elastic material

from which the porous frame is made.

The other coefficients depend exclusively on the fluid

properties or on the pore geometry. Biot’s modified mass

densities are expressed as

fq22 ¼ /2fqeq ; (7)

fq12 ¼ /q0 � fq22 ; (8)fq11 ¼ q1 � fq12 ; (9)

eq ¼ fq11 �
fq12

2fq22

: (10)

q1 is the volumic mass of the frame and can be calculated by

q1¼ (1�/)qs where qs is the volumic mass of the solid con-

stituting the frame. q0 is the volumic mass of the air at rest.

Therefore, the coefficients of the above Biot’s poro-

elasticity equations can be expressed as

eq ¼ q1 þ /q0 �
q2

0fqeq

; (11)

ec ¼ q0fqeq

� 1þ Kb

Ks
; (12)

fq22 ¼ /2fqeq ; (13)

eR ¼ /2KseD ¼ f ðfKeqÞ; (14)

where f is some analytic function of the frequency x. fqeq

and fKeq are, respectively, the dynamic mass density and the

bulk modulus of the porous material. fqeq is associated with

visco-inertial effects and fKeq is associated with thermal dis-

sipative effects. A large number of expressions exist in liter-

ature for these two quantities depending on the dissipative

models selected.7–11

At this point, one could note that for most porous mate-

rials found in vibro-acoustic applications, the bulk modulus

Ks of the material constituting the elastic frame is much

larger than that of the material itself Kb. In addition, the bulk

modulus of the saturating air, Kf ¼ /fKeq , is much less than

that of the material Ks. For most sound proofing materials, /
is close to 1, and thus fKeq is still much lower than Ks.

Using these assumptions, the coefficients may be further

simplified to be written in the following form:

eq ¼ q1 þ /q0 �
q2

0fqeq

; (15)

ec ¼ q0fqeq

� 1; (16)
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fq22 ¼ /2fqeq ; (17)

eR ¼ /2 fKeq : (18)

Finally, Eqs. (1) and (2) can be written in a more

explicit form as

r � rsþx2 q1þ/q0�
q2

0fqeq

 !
u¼� q0fqeq

� 1

� �
rp;

(19)

Dpþ
fqeqfKeq

x2p ¼ fqeq

q0fqeq

� 1

� �
x2r � u: (20)

The key originality of this approach is that, for all

formulations reported here, the models for the fluid dissipation

is inherently contained in the quantities fqeq and fKeq .

Therefore, any existing equivalent fluid model can be used to

predict the values of these quantities. More precisely, this

means that the model could be chosen on a various range of

criteria, e.g., on the basis of the parameters which are avail-

able, prior knowledge of the material behavior, and required

complexity of the material modeling approach. These aspects

will be discussed further in the next section.

III. EQUIVALENT FLUID PROPERTIES

The derivations of the preceding section demonstrate

that two independent sets of parameters are required to

implement the poro-elasticity equations following Biot’s

formulation: the parameters related to the elastic behavior of

the skeleton and those related to the visco-thermal dissipa-

tion inside the fluid phase. This current section focus on the

visco-thermal modeling.

A. Dynamic properties

As a general principle, the propagation of sound in a

fluid medium is fully described by wave impedance and a

wavenumber. For sound propagating in air without dissipa-

tion, these quantities are independent of the frequency of

excitation. Their values are Zc¼q0c0 and kc¼x/c0, where

q0 and c0 are, respectively, the volumic mass of air and the

sound speed in air. These two phenomena are highly depend-

ent on the wavelength of the acoustic perturbation. Thus, it

shall be represented by dynamic quantities which depend on

frequency, Zc(x) and kc(x). These two latter quantities are

related to the dynamic volumic mass and bulk modulus of a

porous medium by

ZcðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifqeq
fKeq

q
and kcðxÞ ¼ x

ffiffiffiffiffiffiffifqeqfKeq

s
: (21)

It should be underlined that these two quantities may be

computed independently. Depending on the type of materi-

als, they may be expressed differently and according to vari-

ous micro-structural parameters.

In addition, the coupling with the full Biot’s poroelastic-

ity equations implies that the considered elastic deformations

cope with thick plate theories. This aspect will be particu-

larly interesting when studying the deformation of perforated

plates which do not necessarily fulfill Mindlin theory (see

Sec. IV B). This formulation also copes with orthotropic or

anisotropic solid plate theories, see, e.g., Ref. 12 and aniso-

tropic formulation dedicated to porous materials, e.g.,

Refs. 13, 14. However, this feature will not be investigated

in the present paper.

B. The particular cases of limp and rigid body
behaviors

The above equations describe the visco-inertial dissipa-

tion in a porous medium with a rigid and motionless frame.

Sound propagation can then be modeled with the Helmholtz

equation for the interstitial pressure. This equation can be

written in the following form:

Dpþ x2
fqeqfKeq

p ¼ 0: (22)

To overcome the limitations of a rigid and motionless

frame, expression of the complex mass density fqeq may be

modified to improve the description of inertial effects. Two

hypotheses are available for this: (i) the material moves as a

whole without deforming and (ii) the porous skeleton is so

soft that the coupling between the frame and the interstitial

fluid is weak. These two limit cases are often referred

to as, respectively, the “rigid body” hypothesis and “limp”

hypothesis.

The first case is relevant to those situations where the

ratio of the Young’s modulus to volumic mass density is

high. This situation may be encountered for stiff materials,

though with a low mass density. In this case, the porous

frame does not deform but inertial effects may occur because

the porous material is allowed to move in a rigid body

motion. Starting from Biot’s poroelasticity equations, see

Eqs. (1) and (2), this situation corresponds to r � u ¼ 0.

After some algebraic manipulations, the complex mass den-

sity can be expressed with15

1fqeq
RB
¼ 1

/fqeq

þ c2

/eq þ ð1� /Þ
/

ceq : (23)

The second case, the limp hypothesis, is most known in

the community. This corresponds to situations where the

ratio Young’s modulus to volumic mass density is small.

Typical examples of limp materials are soft, highly porous

fibrous materials. In this case, the bulk modulus Kb and the

shear modulus N are assumed to have zero values. Some

algebraic manipulations of Biot’s equations lead to the fol-

lowing expression of the modified complex mass density for

the limp case:15–17

1fqeq
limp
¼ 1

/fqeq

þ c2

/eq : (24)

This hypothesis has been proved to lead to accurate,

computationally more efficient models which can be used in
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the situation where the porous materials are not directly

coupled to a vibrating structure.15,18

From the two above equations, it is obvious that for

highly porous materials ð/ � 1Þ which are often studied in

vibro-acoustic problems, the two hypotheses lead to the

same expression for the mass density. Therefore in the fol-

lowing, only the limp hypothesis will be examined. One

should keep in mind however that, e.g., for stiff semi-closed

cell foams having low open porosity, the two hypotheses

may lead to significant differences at low frequencies.

IV. EXPERIMENTAL VALIDATIONS

This section presents three configuration examples

where the proposed formalism is compared to measured data

or simulations available in literature. These comprise the

prediction of diffuse field absorption coefficients using a

one-parameter model, diffuse field sound transmission loss

of vibrating perforated panels, and deformable porous com-

posite materials. Results are compared with data extracted

from literature or measured by the authors. In all these exam-

ples, predicted results have been obtained using an in-house

TMM software.

A. Calculations with one parameter models

The present section illustrates situations where the model

should be adapted to the available parameters for the tested

material. In the two examples below, it is assumed that only

the static air flow resistivity r is available. Therefore, the

model used is the so-called Delany–Bazley–Miki (DBM)

model which corresponds to the well-known Delany–Bazley

model19 further modified by Miki20 to fulfill physical causal-

ity of the predicted surface impedance. The domain of valid-

ity of this latter model is said to be the same as the original

Delany–Bazley model, namely, 0.01< f/r< 1.00. This would

yield a lower frequency limit of around 350 Hz. It may also

be pointed out that Miki also observed that the revised

expressions are well behaved in a larger frequency range, in

particular for f/r< 0.01, which corresponds to a lower fre-

quency limit of the model validity. Therefore, it is expected

that the model proposed here is valid on most of the fre-

quency range observed here, i.e., from 100 to 5000 Hz. For

the elastic effects, two implementations are shown in each

case. Either the full Biot’s poroelasticity equations are used

or a limp hypothesis is assumed.

In the first example the prediction of the diffuse field

sound absorption is compared against reverberant chamber

data. The diffuse field condition is modeled by integrating

all incidence angles from normal incidence to grazing inci-

dence. A single layer of material is directly laid onto an

acoustically rigid floor. The one-parameter DBM model is

used together with measured data that are extracted from

Ref. 21 [Chap. 12, Fig. 12.8]. Note that since the tested ma-

terial slabs are relatively small, a finite size correction should

be applied. Because samples have a square shape, the correc-

tion model proposed by Vigran22 was applied in this study.

A comparison between measured and predicted results

is shown in Fig. 1. The two sets of predictions compare well

with measured data for the frequencies above 400 Hz. Below

this frequency the predictions by Biot’s theory show a peak

at around 200 Hz which is not observed in the measurements.

In this case, the limp model captures better the observed

behavior. This may be due to the fact that the material slab is

not constrained on its perimeter, thus decreasing the effect of

structural resonances at low frequencies.

The second example concerns the prediction of the dif-

fuse field sound transmission for a double leaf partition con-

sisting of a laminate and a steel plate between which a heavy

mineral wool (90 kg m�3) is being sandwiched. This configu-

ration is extracted from Ref. 23 (Fig. 16) where the material

properties for each component can be found. Here again, a

finite size correction according to the Vigran’s algorithm

has been applied.22 Simulated and measured results are com-

pared in Fig. 2. They show that the two sets of predictions

agree well with the measured data at frequencies above

500 Hz. The resonance observed at this frequency corre-

sponds to a breathing frequency of the double-leaf system.

At lower frequencies, the finite size correction allows us to

capture correctly the increased sound transmission loss due

to the finite size of the tested system.

FIG. 1. (Color online) Sound absorption coefficient of 6� 6 ft foam samples:

Comparison between measured data (�) and numerical prediction. - - -:

DBM model with structural effects; � � �: DBM model with limp

assumptions.

FIG. 2. (Color online) Sound transmission loss of a multi-layer system:

comparison between measured data (�) and numerical prediction. - - -:

Miki model for laterally infinite sample; � � �: Miki model for a finite size

sample using Vigran approach.
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At higher frequencies, consistent differences are also

observed between the TMM and the FTMM results. This devia-

tion is also observed in the results of the original paper.23 In

fact, the finite size correction is expected to influence the

results up to the critical frequency of the studied material. In

our case, two critical frequencies corresponding to the two

different panel types may be observed. These critical fre-

quencies lie around 16 kHz for the steel plate and above

32 kHz for the laminate. Therefore, the impact of the FTMM

correction is observed here for the entire frequency range

studied.

B. Vibrating perforated panel

Another range of applications where the proposed for-

malism may be efficiently implemented concerns the vibrat-

ing behavior of perforated panels. The model presented in

this section is based on the work by Atalla and Sgard24

which described the visco-thermal dissipation inside arbitra-

rily shaped perforations. It is proposed here to account for

the plate vibration using Biot’s formalism as described

above.

Experimental and numerical data are extracted from

Ref. 25 where the reader will find the complete description

of the two configurations studied here. In the two cases, the

dissipation inside the perforations is described using the

five-parameter model, which is usually referred to as

Johnson–Champoux–Allard model.8,26 This models makes

use of the static air flow resistivity r, which may be analyti-

cally calculated for simple shape perforations, the porosity

/, which corresponds to the perforation rate /p defined as

the volume of the perforations to the total sample volume,

the viscous and thermal characteristic lengths, K and K0,
which in this particular case are equal and correspond to the

hydraulic radius, and a1, which is the high frequency limit

of the dynamic tortuosity whose value depends on the mor-

phology of the perforation and on the nature of the adjacent

layers.24

Comparisons are shown in Fig. 3 for sound transmission

performances and in Fig. 4 for sound absorption results. In

the case of the sound transmission, the predictions compare

well with the reference data for all perforation rates exam-

ined here. Note that for the /p¼ 0% configuration, the pres-

ent formalism using Biot’s theory corresponds to the

classical three dimensional plate elasticity theory. For sound

absorption configurations, the proposed formalism allows us

to capture the significant increase of performance in the low

frequency range.

C. Deformable porous composites

The last series of examples concerns the modeling of

porous composites consisting of a macro-perforated porous

material hosting a foreign porous inclusion. For the material

considered here, the geometry of the inclusion is a cylinder

which diameter fits tightly the perforation cut in the host ma-

terial. The viscous and thermal permeabilities of the fluid are

expressed, respectively, from a general mixing law as27

PPC ¼ /pPC þ ð1� /pÞPH; (25)

HPC ¼ /pHC þ ð1� /pÞHHFd; (26)

where the subscript PC stands for porous composite, H and

C, respectively, for host and client materials, and Fd is the

pressure diffusion function which expression can be found in

Ref. 28. The two sets of permeabilities are defined from the

properties of the constituting porous materials, respectively,

by

Pi ¼
g0

jgqeqi

; (27)

Hi ¼
k00i

jx
q0Cpk00i

j/i

þ 1þ j

2

8j

q0CpK
02
i

 !1=2
; (28)

where i¼C or H. Then, the dynamic volumic mass and com-

pressibility are calculated using standard relationships as

eqPC ¼
g0

jPPC

; (29)
FIG. 3. (Color online) Sound transmission loss of a solid perforated panel

with different perforation rate /p: comparison between prediction from

Ref. 25 [Fig. 4(b)] (•, �, �, �) and numerical prediction (� � �).

FIG. 4. (Color online) Sound absorption coefficient of a poro-elastic plate

backed with a 100 mm air gap. Comparison between prediction from Ref. 25

(Fig. 7) (symbols) and numerical prediction (broken lines). Rigid frame

assumption: � � �, � � �; elastic frame assumption: �, � � �.
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eKPC ¼
cP0=/PC

c� jðc� 1ÞHPC=/PCj
: (30)

c is the ratio of the specific heats, j is the thermal conductiv-

ity of the saturating air, and P0 is the atmospheric pressure.

Here /PC is the total porosity of the porous composite calcu-

lated as /PC¼/p/Cþ (1�/p)/H where /p is the rate of

inclusion, also called meso-porosity in double porosity

theory. It also corresponds to the perforation rate introduced

in the previous example.

On the other hand, the effective elastic properties are

calculated from a self-consistent approach for a cylindrical

inclusion in a circular sample.29 For this geometry, deriva-

tion of the exact expressions of Young’s modulus and

Poisson’s ratio exist and can be found in Ref. 30.

Expressions are quite lengthy and only the expressions of the

longitudinal Young’s modulus and the longitudinal

Poisson’s ratio are given below as examples,

EL ¼ EC/p þ EHð1� /pÞ þ � � � ; (31)

4ð�C � �HÞ2/pð1� /pÞ
/p=KH þ ð1� /pÞ=KC þ 1=GH

; (32)

�LT ¼ �C/p þ �Hð1� /pÞ þ � � � ; (33)

ð�C � �HÞ/pð1� /pÞð1=KH � 1=KCÞ
/p=KH þ ð1� /pÞ=KC þ 1=GH

: (34)

KH and KC are the lateral compression moduli and GH is

shear modulus for the host material. In addition, the mass

density and the structural loss factor of the porous composite

are given using a mixing law as

q1;PC ¼ /pq1;C þ ð1� /pÞq1;H; (35)

gPC ¼ /pgC þ ð1� /pÞgH: (36)

This model therefore requires the acoustic, elastic, and

damping parameters of the two material components sepa-

rately. For the material considered here (see also inset in

Fig. 5), the host material is heavy stone wool and the client

is melamine foam. The parameters for these two materials

have been characterized at Matelys and are reported in

Table I.

Sound absorption coefficient and sound transmission

loss have been measured in a 100 mm diameter impedance

tube following ISO 10534-2.31,32 Measured data are com-

pared to the simulation obtained using the porous composite

model described above. In addition, calculation of the prop-

erties of the host and of the client alone are also reported.

Results are shown in Fig. 5 for the sound absorption and in

Fig. 6 for the sound transmission.

In these graphs, the measured data show rapid variations

due to elastic deformation of the porous skeleton around 300

and 1000 Hz. It is observed that the model for the porous

composites predicts this phenomenon in a higher frequency

range than that observed in the measured data. The reason is

that the frequency at which this phenomenon occurs largely

depends on the mounting conditions of the sample inside the

tube, conditions which are not accurately known. Besides

these deviations, the general behavior is correctly captured

for both the absorption and the transmission properties of the

FIG. 5. (Color online) Sound absorption coefficient of a porous composite

(PC) material made from a perforated rock wool (host) and a melamine

inclusion (client). Comparison between measured data ð� � �Þ and numerical

prediction (—). Calculation for host alone: - - - and for client alone: � � �.

TABLE I. Acoustic, elastic, and damping parameters of the host and client materials constituting the porous composite.

Material r / a1 K K0 k
0
0 E g � q1

Host 88 400 0.97 1.01 19 48 10 1375 0.3 0 160

Client 15 500 0.98 1.01 100 223 27 200 0.1 0.42 11

Units N s m�4 — — lm lm 10�10 m2 kPa � � kg m�3

FIG. 6. (Color online) Sound transmission loss of a porous composite (PC)

material made from a perforated rockwool (host) and a melamine inclusion

(client). Comparison between measured data ð� � �Þ and numerical prediction

(—). Calculation for host alone: - - - and for client alone: � � �.
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porous composite. Comparisons with the predictions for the

host and for the client materials alone illustrate the need of

this type of model which reproduces the modification of the

acoustic and of the elastic properties of the resulting hetero-

geneous material.

V. CONCLUSION

This paper presents an alternative formalism based on

Biot’s theory which allows one to account for structural

effects with a majority of the existing equivalent fluid mod-

els for the acoustical properties of porous media. Structural

effects are related to the deformation of the solid phase of

the material whereas the visco-inertial and thermal dissipa-

tion is associated with the wave propagation in the interstitial

fluid of the porous material.

The proposed approach relies on the assumption made

by Biot that the dissipation in the fluid phase is independent

of the dissipation which may occur in the material skeleton.

It is highlighted that the proposed formalism applies to vari-

ous derivations of Biot’s poroelasticity equations. Therefore,

the model for the fluid phase may be selected according to

the information which is available for the material, provided

that this information is sufficient to describe the material

behavior.

The proposed model has been used in three types of sim-

ulations. The first type relates to the problem of modeling

sound absorption and sound transmission using a single pa-

rameter model. The second type relates to the problem of

predicting the vibro-acoustic response of perforated panels

accounting for the panel deformation. The third type relates

to the problem of modeling structural effects in porous com-

posite materials.

For the simulations using a single parameter model,

predictions obtained using the proposed model agree well

with measured data and with predictions using other forms

of Biot’s poroelasticity equations. For the problem of model-

ing vibrating perforated plates, the agreement with a classi-

cal fluid–structure interaction model is good for several

perforation rates. Finally, for porous composites, compari-

sons with measured data obtained using the impedance tube

show that the proposed model allows one to capture the cor-

rect trend at both low and high frequencies. For the medium

frequency range, resonance effects due to the porous frame

deformation are not correctly reproduced as the exact bound-

ary conditions on the sample circumference are not known.

Improving the accuracy of the TMM algorithm to include vari-

ous types of boundary conditions is subject to ongoing work.
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