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Abstract

Acoustical porous materials like polymer foams or mineral wools are widely used in noise and vibration control. The acoustic effi-
ciencies of these materials may be influenced by their elastic and damping properties. It is thus important to determine parameters such
as Young’s or shear moduli, Poisson’s ratios and loss factors.

The first objective of this paper is to present a comprehensive list of current available techniques and difficulties faced in the estima-
tions of the elastic and damping parameters for acoustical porous materials. The second objective is to apply the maximum number of
these methods to the characterization of a porous material and to discuss the results.

In a first part, a brief recall of the mechanical behaviors of acoustical porous materials is given. This part includes a discussion on the
influence of viscoelasticity and anisotropy often observed in porous materials. A description of experimental methods used for the elastic
and damping characterizations of acoustical porous materials is also given. In total, three groups of quasistatic methods and six groups
of dynamic methods are presented. Their main advantages and drawbacks are reported and discussed.

In a second part, five of the presented methods are applied to a melamine foam to investigate the frequency and temperature depen-
dences of its elastic and damping parameters. Characterization results are compared and discussed.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In the past few years, numerous new experimental meth-
ods have been proposed to characterize the elastic and
damping parameters of fibrous materials or open-cells
and air saturated polymer foams.

These materials are widely used for sound absorption
and insulation in buildings, inside the fuselage of airplanes,
in machinery enclosures, etc. The influence of their elastic
parameters (Young’s or shear moduli, Poisson’s ratios, loss
factors, etc.) may be important when porous materials are
bounded onto the vibrating structure. When backed by a
rigid wall, the absorption coefficients of these materials
may also be noticeably influenced at the quarter wave-
length resonance and its harmonics (cf. [1], Chapter 6, Sec-
tion 6).

The recent development of new methods to assess these
elastic parameters denotes an actual effort to consider the
mechanical and particularly viscoelastic behavior of porous
materials. The knowledge of the intrinsic material parame-
ters is crucial for quality controls or for more accurate pre-
dictions of their acoustic performances. This effort also
denotes the search for a unique characterization method,
or at least a limited set of methods, suitable for most of
the acoustical materials.

In this context, we will list commonly used and more
recent experimental methods for the determination of
Young’s or shear moduli, Poisson’s ratios and loss factors
of acoustical porous materials. The focus is put on the
experimental set-ups or more precisely experimental config-
uration rather than on the global method used to identify
the material parameters from the measurements. Most of
the experimental methods described here are adaptations
of techniques used for polymers or metal [4,10,22] to esti-
mate Young’s moduli and loss factors ranging from
approximately 10° to 10’Nm 2 and from 1072 to 1,
respectively.

The structural models [17,43,34,19] which are usually
not appropriate for plastic foams due to possible modifica-
tion of the skeleton’s chemical formulation during the
foaming processes and possible phase transitions are not
studied here.

First, a brief recall of porous material mechanical
behavior is presented. The methods are then described
and classified into two classes: quasistatic methods where
inertia effects are neglected and dynamic ones which are
usually resonant. The advantages and drawbacks for each
of these methods are presented and summarized at Section
4. This last section also addresses issues that still need to be
solved.

In a second part, five of the methods described in the
review are used to study the viscoelastic behavior of a mel-
amine foam and to investigate the frequency and tempera-
ture dependences of its elastic parameters. Characterization
results are compared and discussed.

2. Mechanical behavior

The understanding of porous materials’ mechanical
properties, in particular their viscoelastic ones and their
symmetry groups (isotropy, transverse isotropy, orthotro-
py, etc.), is a prior step to their elastic and damping
characterization.

In this paper, we mainly focus on polymer foams which
usually exhibit a phase transition in the frequency and tem-
perature domains of common use ([20-8000] Hz and [—50
to +50] °C). This phase transition is associated with a
noticeable modification of the elastic and damping proper-
ties of the foams.

2.1. Viscoelasticity

The viscoelastic behavior of polymer foams is intermedi-
ate between the pure elastic solid state and the ideal viscous
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liquid one. It thus results in a mechanical response depend-
ing on time. Moreover, the phenomena encountered with
solid viscoelastic materials are also observed with porous
materials having a polymer skeleton, namely (cf. [15]):

e if the stress is held constant, the strain increases with
time (creep effect),

e if the strain is held constant, the stress decreases with
time (relaxation effect),

e the effective stiffness depends on the rate of application
of the load,

o if cyclic loading is applied, an hysteresis occurs leading
to a dissipation of mechanical energy.

Fig. 1 illustrates the viscoelasticity behavior for the mela-
mine foam presented at Fig. 3 when measuring the stress
evolution versus strain for a constant strain rate deforma-
tion (the technique used to obtain the data is described at
Section 3.2). Three regions can be identified on this figure
[18]:

e Region 1: The linear bending region. In this region lim-
ited to small strains, the foam cells bend and stretch (the
elastic parameters are measured in this region).

e Region 2: The buckling region. Stress increases slowly
with strain due to the buckling of the foam cells.

e Region 3: The densification region. The cells collapse
completely and the foam behaves as a solid material.

In the case of acoustical porous materials, which usually
do not undergo large deformations for vibroacoustics pur-
poses, studies in the literature are limited to the region of
linear viscoelasticity. In this region, the Boltzmann’s super-
position principle (see [15] for example) which states that
the total stress ¢ applied to a material is the sum of each
stress o; generated by each deformation ¢, is verified. The
measurements presented here are carried out under this

40
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Fig. 1. Stress versus strain measurements for a melamine foam sample at
24 °C with constant strain rate deformation and recovery.

assumption of small deformations. Complex moduli are
used to account for the viscoelastic behavior of acoustical
porous materials submitted to time periodic loadings:

E = E(0) + JE"(0) =E'(1 + jn(®)) (1)
with 5(w) :EE/((;O)) . (2)

In these equations, w is the angular frequency, j is the
square root of —1. E’ is the storage modulus which corre-
sponds to a measure of the energy stored during a load cy-
cle. E” is the loss modulus which represents a measure of
the energy lost during the cycle. #(w) is the loss factor.

Note that for fibrous materials (and similar ones like
felts), no linear zone is usually identifiable [14]. The range
of strain values used during elastic characterization tests
should thus be provided. Moreover, for these materials,
Poisson’s ratios are assumed to be equal to zero due to
the weak or nonexistent links between the fibers (see [40]
for example).

2.2. Anisotropy and inhomogeneity

Naturally, fibrous material are anisotropic from a
mechanical point of view [41,40]. Foams are also subject
to anisotropy due to gravity effects occurring during most
of the foaming processes commonly used [18,4]. In partic-
ular, they may exhibit an orthotropic or transverse isotropy
behavior [27], the foam cells being stretched in the foam
expansion direction. However, despite these statements,
few methods take this anisotropy into account.

In the following, E; will refer to the Young’s modulus of
a material for direction i, G;; to the shear modulus for plane
i—j and v; to the Poisson’s ratio related to a strain in the
direction of the second subscript resulting from a stress
applied in the direction of the first subscript.

In addition to the anisotropy, a spatial inhomogeneity
may also be observed especially for felts or materials com-
posed of recycled products. To limit the potential effects of
spatial heterogeneity the foam samples used in all tests pre-
sented in the second part (Section 5) have been cut off from
the same small-sized block of material.

3. Descriptions of the methods

The methods described hereafter for the elastic and
damping characterizations of acoustical foams have been
classified into two classes: quasistatic methods and
dynamic ones.

The quasistatic methods, for which the inertia effects are
neglected, are valid for frequencies much smaller than the
first resonance frequency of the system considered. A low
coupling assumption between the material phases is also
assumed in this regime. Porous materials are thus modeled
as solid media. Three groups of quasistatic methods are
identified according to their loading type: compression, tor-
sion and pure shear (see respectively Sections 3.1-3.3).
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The dynamic methods account for inertia effects and are
thus valid at higher and usually wider frequency ranges.
The descriptions of six groups of dynamic methods can
be found respectively in Sections 3.4-3.9.

It is important to note that due to the amount of infor-
mation, methods are only briefly described. The authors
recommend to refer to cited articles to obtain exhaustive
information about data acquisition and data processing
for all the methods presented.

3.1. Brick under uniaxial compression loading, quasistatic
regime

Fig. 2A presents the compression set-up described by
Mariez et al. [26,27]: a cubic foam sample is placed between
two parallel rigid planes. The lower plane is axially excited
by an electrodynamic shaker while the higher plane is fixed.
The planes are covered with sandpaper to avoid sliding of
the sample against them; these boundary conditions allow
to be close to clamped conditions without explicitly gluing
the sample to the planes. The imposed deformation is of
the form & = g + gqsin(wf), where ¢ is the time variable,
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Fig. 2. Schematic representations of experimental set-ups for the elastic
characterization of porous materials under various vibrating states or
types of loading conditions and for different sample shapes. Vibrating
state or load type A, uniaxial compression; B, torsion; C, pure shear; D,
uniaxial traction-compression; F, point force; I, line force. 1, material
sample; 2: accelerometer; 3, force transducer; 4, torque transducer; 5,
angular displacement transducer. Set-ups are represented with a side view
except for set-up F (top view).

F I8

& 1s the static strain fixed to avoid a surface inhomogeneity
of the porous sample (which will be clearly observed for the
melamine foam tested at Section 5.1), &4 is the amplitude of
a harmonic strain.

The elastic characterization is realized in two steps.
First, the imposed displacement and an induced transverse
displacement by Poisson’s effect in a perpendicular direc-
tion are measured (by means of a laser vibrometer for this
latter). This first step allows an estimation of this Poisson’s
ratio. Second, a measurement of the stiffness of the sample
is done from the measured compression force and the
imposed displacement. The complex Young’s modulus, in
the direction of the uniaxial compression, E is estimated
by use of an inverse method based on precomputed results
of a static three-dimensional solid finite element code (cf.
[38] and [26,27]). The measurement operation can however
be repeated changing the observation direction for the
measurement of Poisson’s ratios and the uniaxial compres-
sion direction to estimate the complex Young’s moduli in
the three-dimensional space.

An adaptation of this uniaxial compression test to cylin-
drical samples is proposed by Langlois et al. [25]. An isot-
ropy of the material is assumed for this method based on
charts from precomputed results to estimate the Young’s
modulus and Poisson’s ratio from two material samples
of different sizes.

In the case of fibrous materials (assuming their Poisson’s
ratios are equal to zero), Tarnov [40] proposed analytic
expressions to estimate the complex Young’s moduli from
the experimental set-up described by [26,27].

3.2. Cylinder under torsion loading, quasistatic regime

One of the main interests of a torsion test compared to
the previous uniaxial compression one is that it ensures a
constant volume of the material during the loading. Conse-
quently, the fluid—structure coupling can be considered to
be lower for this method compared to previous compres-
sion tests.

The experimental set-up for this test, described at
Fig. 2B, is quite similar to the uniaxial compression one
except that one of the planes is harmonically excited in tor-
sion and that the sample is of cylindrical shape. The shear
stress and strain, obtained from measurements of a torque
and an angular displacement transducers are used to calcu-
late the complex shear modulus G. A more detailed descrip-
tion of this experimental set-up for which commercial
devices exist is presented by Etchessahar et al. [14]. Section
5.2 shows the results obtained when applying this method
to a melamine foam.

3.3. Layer under pure shear loading, quasistatic regime

The complex shear moduli of a material can also be esti-
mated with a pure shear test. A complete description of a
measurement set-up and an application to an open-cell poly-
urethane foam are presented in [14]. Two layers of the
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material with identical dimensions are sandwiched between
three parallel metal plates (cf Fig. 2C). The two external
plates are connected to each other and are harmonically
translated by a shaker. The vertical displacement, u, of these
plates is measured by means of an accelerometer or an induc-
tive displacement sensor. A force transducer placed between
the top of the middle plate and the supporting frame is used
to measure the transmitted force F. Finally, the complex
shear modulus is estimated from the measured ratio F/u
under the assumption that the thickness of the samples is
small compared to its other dimensions.

An alternative measurement set-up involving only one
material sample between two metal plates is presented in
[40]. This last set-up is applied to estimate a complex shear
modulus for a glass wool.

The above-illustrated quasistatic methods allow estima-
tions of the elastic and damping properties of acoustical
materials in frequency ranges that remain low compared
to acoustical frequencies. Estimations at higher frequencies
are possible with these set-ups from measurements at vari-
ous temperatures and by making use of the frequency—tem-
perature superposition principle [15,10] (an example of
application of this principle will be presented in Section
5.2). However, as it will be concluded, it seems perilous
to use the frequency-temperature superposition principle
from measurements that consider only the solid phase of
a diphasic material.

As an alternative to the use of the frequency—tempera-
ture superposition principle, the following section presents
experimental methods for the dynamic evaluation of mate-
rial parameters.

3.4. Beam under longitudinal vibrations

The complex Young’s moduli E; can be estimated from
the modal analysis of a beam-like sample excited into lon-
gitudinal vibrations. The experimental set-up is depicted at
Fig. 2D.

A first application to a close-cell foam was presented by
Pritz [30]. The complex Young’s modulus E is estimated
from the analytical solution for resonance frequencies
and resonance magnitudes of the one-dimensional wave
equation. The porous material is considered as an “equiv-
alent solid” in this basic modelling; displacements of the
fluid phase are not accounted for in this model limited to
a low frequency range (cf. [29]).

To minimize the influence of viscothermal effects, when
applying this method to an open-cell material, Sfaoui pro-
poses to realize measurements in vacuum [36,37]. It is at
least recommended to test materials with very low or very
high static air flow resistivities ([7,1]) and high densities to
limit visco-inertial dissipative effects when measuring in air.

Another important point on which we will focus in the
next sections is the fact that the material to adhesive layer
interface is reduced to a minimum in this set-up.

Finally, this method presents the advantage to give a
quick but rough (in the case of open-cell material) estima-

tion of E and its evolution with frequency in the approxi-
mate range [100-1000] Hz. Section 5.3 present the
application of this method to a melamine foam.

3.5. Brick under uniaxial compression loading, dynamic
regime

The quasistatic uniaxial compression test described at
Fig. 2A and Section 3.1 can be adapted to a mass-spring
system [11]. The fixed plane is replaced by a mass with a
known weight. The estimations of the elastic parameters
for the material under test is realized by studying the first
mass-spring resonance of the system. First, the dynamic
stiffness of the material sample at the resonance frequency
is computed then the complex Young’s modulus in the
direction of the uniaxial compression is deduced using
the same computational technique as the one described
for the quasistatic method 2A. From measurements on
two samples of different dimensions, an estimation of the
Poisson’s ratio can also be done (the material is still sup-
posed to be isotropic).

Caution should be taken in the choice of the sample as
the mass may rotate in the case of a non-homogeneous
material. This phenomenon leads to the excitation of other
vibrational modes with eigenfrequencies which may be
close to the mass-spring mode one. This usually results in
unreliable characterizations. An interesting study on this
topic, and moreover applied to a melamine foam, is pre-
sented by Guastavino et al. in [21].

3.6. Beam under bending vibrations

A beam sample can also be tested under bending vibra-
tions as described in the set-up F of Fig. 2 [45]. In this
method, which derived from the Oberst’s beam method
[5], a shaker is set at the center of a base metal beam sup-
porting the foam layer and imposes a transverse displace-
ment. A laser vibrometer measures the transverse velocity
of the base beam at one free tip.

The determination of the material Young’s modulus and
the loss factor in the direction of the beam axis is carried
out with an inverse calculation. However, to observe a sig-
nificant modification in the vibration behavior of the metal
base beam, the material thickness should overcome the
Ross Kerwin and Ungar’s model assumptions [33], numer-
ical computations are then required.

In the case of very low Young’s modulus to measure
(typically less than 10° N'm~?) a constrained metal beam
can be added on top of the foam layer as described in
the original Oberst’s method. The vibration behavior is
then mainly due to shear strain of the sample material
under test. Numerical computations are also required to
inverse the material modulus in this case.

One advantage of this method is to allow a diphasic
modelling of the porous medium. The main disadvantage
of this method is the heavy computational resources
required. The method presented in the following section
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attempts to solve this problem by using a simplified calcu-
lus to model a plate-porous configuration.

3.7. Plate under bending vibrations

Etchessahar et al. [13] have proposed to study the vibra-
tions of a standalone clamped porous plate to estimate the
elastic and damping parameters of the material. A fit of
Prony series [39] is proposed to identify the parameters at
resonance frequencies. However, the experimental difficulty
faced for applying a point force on the porous medium lead
Etchessahar and colleagues to conclude that a two-layer
configuration should be of greater interest.

Jaouen et al. have presented such a configuration in [24].
A layer of porous material is bonded onto a metal plate. A
shaker imposes a transverse point load on this base metal
plate. The input force on the plate is measured by means
of a force transducer and its transverse velocity is measured
by a laser vibrometer or by the integration of a light accel-
erometer signal.

A simplified model, based on the mixed displacement—
pressure formulation of the Biot—Allard theory [6] is used
to predict the vibration behavior of this composite plate
at low frequencies (for the first resonance frequencies).
The base plate and the porous solid phase are described
as an equivalent viscoelastic plate; the fluid phase and its
coupling with the solid one is also accounted for. The poro-
elastic layer is assumed to be isotropic.

A non-linear inversion algorithm is then used to esti-
mate the Young’s modulus and the loss factor at the system
resonance frequencies from the measurements and numer-
ical simulations. The Poisson’s ratio is assumed to be equal
to its quasistatic value obtained from a quasistatic method
such as method 3.1.

The results of this method applied to a melamine foam
are reported at Section 5.5.

3.8. Acoustical excitation-based methods

Methods based on acoustical excitations of material
samples have also been proposed. Most take advantage
of the first quarter wavelength resonance in the thickness
of a porous layer glued to a rigid backing.

Sellen [35] has proposed estimations of the Young modu-
lus, the loss factor and Poisson’s ratio of a material by fitting
surface impedance and sound absorption measurements in a
standing wave tube with simulation results from a complete
isotropic poroelastic model. The exact circumferential
boundary conditions of the sample in the tube which largely
influence the results [42,28], is the main drawback of this
method which can give, with confidence, orders of magni-
tude for the elastic parameters.

In the same time, Gareton et al. [16] presented a method
based on the normal acoustic surface impedance measure-
ment of a large and thick material sample backed by a rigid
wall and loaded with a solid plate in free sound pressure
field generated by a sound pressure monopole.

Allard et al. [2] have modified this last set-up to estimate
one shear modulus of a thin porous sample (with a thick-
ness around 5 or 10 mm) from the localization of a pole
of the reflection coefficient at oblique incidence, near the
grazing incidence. The estimations of the shear modulus
relies on the fitting of a curve and the assumption that
the corresponding Poisson’s ratio is real and constant with
the frequency.

These last two works and the theoretical developments
realized to describe the propagation of surface waves on
porous material have opened new perspectives for the elas-
tic characterization of porous materials.

3.9. Phase velocity measurement-based methods

Allard et al. [3] proposed in 2002 a method for the esti-
mation of one shear modulus from the study of the Ray-
leigh structure borne surface wave on a porous material.
Despite this method has the inconvenience, like most of
the acoustic ones previously presented, to require large
samples, it allows estimations of an elastic modulus at fre-
quencies higher than the usual methods: from 2 to 4 kHz.
This method has, later on, been extended to lower frequen-
cies or thinner samples [8].

In 2005, Boeckx et al. [9] also presented a method allow-
ing the estimation of a complex shear modulus and a com-
plex Poisson’s ratio in the approximate frequency range
200-1300 Hz. Fig. 21 is a schematic representation of the
experimental set-up. The bottom side and an end of a large
and thick sample layer is glued with a double sided tape to
a rigid metal plate. The opposite end is excited with varying
frequencies on its width by a thin metal strip attached to a
shaker so that the entire edge is excited simultaneously.
The vertical displacements in the harmonic regime induced
by the excitation on the free upper side of the sample are
measured with a laser vibrometer along a line from the
excited end to the motionless one. Spatial Fourier trans-
forms of these displacement profiles are computed to
deduce the wave numbers and phase velocities. The shear
modulus, its corresponding loss factor and a Poisson’s
ratio are then estimated by fitting the measurements phase
velocities with results from a theoretical model.

4. Summary and discussion

Table 1 summarizes the frequency ranges, temperature
ranges and sample sizes usually observed for the methods
presented. Temperature ranges may be limited by the trans-
ducers used. In particular, shakers and accelerometers have
usually a narrow temperature range of use.

Table 2 adds comments on the methods and recalls their
main advantages or drawbacks.

From the analysis of Tables 1 and 2, it is obvious that no
unique method can be applied to estimate accurately the
elastic and damping parameters of all existing acoustical
porous material. Moreover, a number of issues needing
attention can be listed.
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Table 1

Method groups, approximate frequency and temperature ranges of use, sample shape and size

Method Description Freq. range Temp. range Sample shape and size
group (approximate, Hz) (approx., °C)
A E Uniaxial compression (quasistatic 1-100 0 to +40 Brick or cylinder; at least ~20 mm thick, 40 mm
and dynamic) thick recommended
B Torsion 1072 to 10 0 to +40 Cylinder, at least ~10 mm thick
C Pure shear 1072 to 10 0 to +40 Parallelepipedic of few cm long and few mm
thick
D Longitudinal 100-1000 0 to +40 Beam, length of 200 mm at least
F, G Beam, plate bending 1001000 0 to +40 Beam or plate, one side of at least 400 mm long
H 1/4 wavelength resonance 100-1000 Ambient Plate, surface of 1 m? at least
I Phase velocity (general) 100-1000 Ambient Surface of 1 m? at least
Rayleigh wave 10*-10* Thick sample
Table 2
Method groups, comments on use
Method Description Comment
group
A E Uniaxial compression (quasistatic ~ Allow direct measurement of Poisson’s ratios. Method described by Mariez et al. allows
and dynamic) characterization of orthotropic materials (under some assumptions)
B Torsion Commercial devices widely spread. Fluid phase effects are limited, simple and fast modelling
available
C Pure shear Simple and fast modelling available
D Longitudinal Simple and fast modelling available
F,G Beam, plate bending Time and memory consuming inversion methods unless use of dedicated numerical codes
H 1/4 wavelength resonance Sensitive to boundary conditions
I Phase velocity Rayleigh wave method allow estimation in approximate freq. range from 2 to 4 kHz

e Most of the dynamic methods are based on a major, and
wrong, assumption assuming Poisson’s ratios v; are real
and constant in each frequency range of measurement.
This assumption was first invoked due to the difficulties
faced when trying to directly measure Poisson’s
ratios.The evaluation of a Poisson’s ratio from estima-
tions of two moduli [31] appears as a simpler solution
than a direct measurement of this Poisson’s ratio.

e It has been shown that the fluid phase has an influence
on the estimations of the elastic parameters even for
quasistatic methods [12,11]. The influence of acoustical
properties uncertainties for the dynamic evaluations of
elastic and damping properties of porous materials is
currently investigated but still remains a widely open
question. In a more general way, the uncertainties on
the elastic parameter estimations are usually not
reported.

e In the case of multi-layered configurations using a base
beam or a base plate, the exact condition at the metal-
porous interface is not exactly known. A perfect bond
is always supposed in the modelling and the influence
of the gluing conditions are rarely investigated although
their influence on the characterization results may not be
negligible [23,45].

e Finally, too less work has been done to consider the
anisotropy of acoustical porous materials yet.

In conclusion to this part, the safest way to characterize
a porous material is to use a combination of methods

according to their limitations and in connection with the
sizes of the available material samples.

5. Application to a melamine foam

In order to test the robustness of some of the previously
presented methods, five of them are used to estimate the
Young’s or shear moduli and loss factors of a melamine
foam. This lightweight, heat and flame resistant, open-cell
material is used, or can be potentially used, for sound
absorption or sound insulation in the fields of building con-
struction and transportation. Melamine foams are used in
wedges of anechoic rooms or inside fuselages of airplanes.

The choice of a melamine foam was guided by the fact
the manufacture process for this material is well controlled
and that it possesses interesting elastic properties to illus-
trate the methods presented in the first part of this article.
Moreover, samples can be cut easily from this material.

Fig. 3 shows a picture of the cell morphology for this
material.

In the following, the same perpendicular directions (or
axes) 1, 2 and 3 will be used to orientate all foam samples;
subscripts 1, 2 and 3 will refer to a quantity measured or
estimated in one of these directions. These samples have
all been cut off from a small-sized block of melamine foam
to avoid spatial heterogeneity as much as possible.

Note that an interesting study of the heterogeneity and
anisotropy of this material has been published recently by
Guastavino et al. [20,21].
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Fig. 3. Electron microscope picture of the tested melamine foam. The
solid phase, or skeleton, of the foam appears in white.

5.1. Brick under compression loading, quasistatic regime

The method described at Section 3.1 has been applied to
a 40 x 40 x 40 mm? sample of the melamine foam (more
precisely, the method used here is the one described by
Mariez et al. [26]). Fig. 4 shows the variations of the
Young’s modulus E; and the loss factor x3 with the static
strain €.

The linear domain of measurement for the elastic prop-
erties is obtained for a static strain ¢ equal to 2% (the
thickness of the surface inhomogeneities are thus estimated
around 0.8 mm).

Estimation results for the Young’s moduli E; and loss
factors #; at 18 °C for the three perpendicular directions
1, 2 and 3 of the same sample of melamine foam are pre-
sented at Fig. 5. These values confirm the elastic anisotropy
of the melamine foam and, more precisely, that this mate-
rial has a symmetry close to an orthotropic one (assuming
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Fig. 4. Compression test on direction 3 of a melamine foam cubic sample
(40 x 40 x 40 mm°) at 18 °C. Error-bars are computed from measurement
uncertainties.
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the principal axis of the material are parallel to the cube
directions 1, 2 and 3). The accuracy of the results obtained
for such an isotropic material with this method, based on a
isotropic model, will be discussed in Section 5.6.

Another remarkable point is the increase of the moduli
with frequency which confirms the viscoelastic behavior of
the foam. Values over 70 Hz are reported although the low
coupling effects assumption between the material phases
for this foam and this configuration is no more valid above
this frequency [12,11].

Fig. 6 shows measurement results for the Poisson’s ratio
vo3 in the frequency range [40-80]. This frequency range
differs from the one used for the measurements of Young’s
moduli, the sensors used was different and the authors were
not able to have consistent values for the Poisson’s ratio
below 40 Hz. These Measurements of the Poisson’s ratio
Vo3 show slow decreases of its real and imaginary parts with
the frequency. These observations are coherent with the
theory of viscoelasticity presented at Section 2. In first
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Fig. 6. Evolution of the complex Poisson’s ration v,3 at 18 °C. Test in
compression [26,27]. (O) Real part, () imaginary part.
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approximation, this Poisson’s ratio can however be consid-
ered as real (the imaginary part having values very close to
0) and constant. This approximation, limited to a narrow
frequency range, has been extensively used by the past
[26,27,25,45,2,8] under valid conditions and less valid ones
(because applied to a wider or different frequency range
than the measurements one). Under this real and constant
approximation, v,3 is found to be equal to 0.44, its mean
value over the measurement data for its real part. This
value is close to the one obtained in the same frequency
range by the authors from the version of this experimental
set-up adapted to cylindrical shaped [25]: 0.45.

5.2. Cylinder under torsion loading, quasistatic regime

Measurements for the melamine foam, at temperatures
from 0 to 40 °C, with a commercial Rheometric Scientific
RDA II apparatus are reported in Figs. 7 and 8 (Fig. 1 is
also plotted from measurements obtained with this appara-
tus). Radius and height of the cylindrical samples used are
31 and 10 mm, respectively.

One can note that the order of magnitude for the com-
plex shear modulus G»3 at 24 °C and 2 Hz, for example,
is coherent with the order of magnitude of the complex
Young’s moduli estimated with the quasistatic compression
test at 18 °C and 7 Hz. This point allows a first consistency
check of the measurements remembering that for viscoelas-
tic materials, the frequency dependences of the complex
shear moduli and the complex Young’s moduli are alike.

In addition, a state transition is clearly observed at
24 °C, on Fig. 8, in the [0.01-10] Hz frequency range. How-
ever, without any additional information, no conclusion
can be made on the nature of this transition.

An example of application of the frequency-tempera-
ture superposition principle from measurement results of
Figs. 7 and 8 is shown at Fig. 9. The variations of the real
and imaginary parts of G,3 are estimated for a temperature
of 24°.
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This frequency—temperature superposition representa-
tion has been obtained from horizontal shifts of the mea-
sured real part of G,; at various temperatures.
Coeflicients of the Williams—Landel-Ferry equation [44],
computed from a least square fit of the horizontal shifts
values, are: C; = 7.23 and C, = 98.42.

One can observe a good correspondance between the
real part of the modulus G,3 and the linear model of visco-
elasticity introduced by Pritz [32] (Zener derivative model)
with fitted parameters: Go=49,300 N m2, d=2.16,
o =0.350, f =0.338 and 7= 0.084 (using the same nota-
tion as in [32]).

The frequency—temperature superposition applied to the
loss modulus G, results in much more scattered data. The
difficulty to estimate precisely high loss factor values as
those encountered for acoustical porous material (usually
around 0.1) explained partly this fact.
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One can also observed a bias between the measurements
and the application of the linear model of viscoelasticity:
values of the loss modulus are overestimated in the whole
frequency range studied. Again, the difficulty to estimate
precisely high loss factor values explained partly this fact.
Moreover, the influence of the fluid phase and its coupling
to the solid one, neglected in the model used, may add to
the previous difficulty. This influence, mainly of visco-dissi-
pative nature, is supposed to remain small at low frequen-
cies [11] but may differ with the temperature. It thus
appears perilous to use the frequency—temperature super-
position principle from measurements that consider only
the solid phase of a diphasic foam.

5.3. Beam under longitudinal vibrations

Figs. 10 and 11 show the results obtained with this
method applied to a 185mm wide and 10 x 10 mm?
cross-section melamine foam beam as circle marks.

Although the melamine foam is an open cell material,
this method gives coherent results with the theory of visco-
elasticity, for the first two modes. The model used in [30],
which does not account for the material fluid phase, shows
its limitations with increasing frequency when the fluid
phase and its coupling with the solid phase are not negligi-
ble [12,11]. A more general model of open-cell porous
media, as the Biot-Johnson—Champoux-Allard’s [7,1]
model is thus needed to account for the inertial, viscous
and thermal interactions between the material two phases
and their effects on the vibration response of the sample.

Results from this method are discussed further and com-
pared with those obtained from the two following methods
at Section 5.6.
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Fig. 10. Comparison of the results obtained for the Young’s moduli of
melamine foam. Solid, dashed-dotted and dashed curves: quasistatic
compression test 2A at 18 °C for directions 1, 2 and 3, respectively; (O)
beam under longitudinal vibrations (set-up 2D, dir. 1, 25 °C), (O) plate
under bending vibrations (method described at Section 3.7, dir. 1 and 3,
23 °C), (A) beam under bending vibrations (set-up 2F, dir. 1, 20 °C).
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Fig. 11. Comparison of the results obtained for the loss factors of
melamine foam. Solid, dashed-dotted and dashed curves: quasistatic
compression test 2A at 18 °C for direction 1, 2 and 3, respectively; (O)
beam under longitudinal vibrations (set-up 2D, dir. 1, 25 °C), (O) plate
under bending vibrations (dir. 1 and 3, 23 °C), (A) beam under bending
vibrations (set-up 2F, dir. 1, 20 °C).

5.4. Beam under bending vibrations

Figs. 10 and 11 show results of this method applied to
the melamine foam at a temperature of 20 °C as triangular
marks.

Measurements have been realized at six temperatures
from 5 to 30 °C (by steps of 5 °C), but the low evolution
of the elastic parameters for this foam does not allow an
extrapolation to a noticeably wider frequency range using
the frequency—temperature superposition principle.

Indeed, one can observe that the results shown at Figs.
10 and 11 for temperature of 20 °C are close to those
obtained from the quasistatic compression test at 18 °C
(cf. Section 5.1) for direction 1. One also notices that the
real part of the modulus increases with the frequency at a
fixed temperature thus confirming the consistency of the
results.

5.5. Plate under bending vibrations

The results of this method applied to the melamine foam
at a temperature of 20 °C are reported in Figs. 10 and 11 as
square marks. The aluminum base plate used had size of
520 x 560 x 3.175mm> and the foam sample was
25.4 mm thick.

5.6. Comparison of the results

A good correspondence is observed between the results
of Figs. 10 and 11 obtained from the different methods.
The evolutions of the moduli are coherent with the theory
of viscoelasticity (moduli increase with the frequency at a
given temperature). Moreover, the estimations for a same
direction are of the same order of magnitude and in addi-
tion, these estimations are close one to each other. These
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results, originally published in [23], are also found to be
concordant with those presented in [9] at a temperature
around 21 °C.

However, two remarks on these results can be made.
First, in the upper frequency range of use of most methods,
the increase of the elastic moduli, and loss factors, seem too
important to be trustworthy. Several reasons can be invoked
to explain this observation among which are the following.

e The effects of the fluid phase may not be negligible as
supposed in the modelling for methods of groups A
and B.

e Methods of group A are based on a biased model which
assumes the material is isotropic even if it has been pre-
viously reported in this article that this is not the case for
the tested porous medium. Nevertheless, it can be
observed that the estimation obtained for Young’s mod-
ulus E} with such a method are close to estimations
obtained from others set-ups and in particular the ones
based on a one-dimensional model.

e Methods in groups A, F and G which are based on
numerical computations can be subjected to a lack of
convergence during the inversion process leading to
approximative values of the elastic parameters.

The second remark is that the loss factor results are
much more scattered than those for the real parts of the
Young’s moduli. This observation illustrates the experi-
mental difficulty to estimate high loss factors. The lowest
values might be representative of the foam’s loss factors
while higher values might be related to model or methods
inconsistency as discussed in the previous paragraph.

In the case of direction 1, estimations of the deviations
between the different methods for the real Young’s modu-
lus E} and its corresponding loss factor 1, can be com-
puted. Around 200 Hz, the mean value and standard
deviation of E| (computed over the three methods giving
results around this frequency: beam under longitudinal or
bending vibrations and plate under bending vibrations)
are 1.80 x 10° and 0.25 x 10° Pa approximately. The rela-
tive error for the estimation of E| can thus be estimated
to 14% approximately. This error is acceptable compared
to the error usually observed when estimating a real elastic
modulus for a solid material. Concerning the loss factor 7y,
its mean value and standard deviation are 0.10 and 0.06
approximately. The relative error is thus computed to
60% approximately.

6. Conclusion

Available experimental methods for the elastic and damp-
ing characterization of acoustical porous materials have
been presented after a brief recall of the mechanical behavior
(viscoelastic, anisotropic and inhomogeneous) of these
materials, in particular polymer foams and fibrous materials.

The methods have been categorized in two classes
(quasistatic and dynamic methods) or nine groups depend-

ing on the vibrating states or load types. The main advan-
tages and drawbacks of each method have been discussed
individually and a number of general issues has been
reported. These points requiring attention are: (i) an usual
and wrong assumption of real and constant Poisson’s
ratios in a large frequency band, (ii) the non-negligible
influence of the fluid phase even at low frequencies —
around 100 Hz and more; (iii) the effects of the gluing layer
between the apparatus and the material sample rarely
accounted for, (iv) too less work has been done to consider
anisotropy of the materials.

Finally, five of these methods have been applied to a
melamine foam to investigate the frequency and tempera-
ture dependences of its elastic parameters. The deviations
between the results obtained from the different tested meth-
ods have been reported. These values cannot be generalized
to other materials but give a first estimation of the param-
eters accuracy. Inter-laboratory tests may also be carried
out on more materials to have a better evaluation of the
bias and error of each characterization method.
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